Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals
Abstract
:1. Introduction
2. Experimental Procedure and Calculations
2.1. Materials
2.2. Basic AZTS NC Synthesis
2.3. Variation of the NC Composition and Stoichiometry
2.4. Characterization
2.5. Lattice Dynamics Calculations
3. Results and Discussion
3.1. AgxCu1-xZnSnS4 (ACZTS) NC Series
3.2. Heating of the NCs in Solution
3.3. Variation of Silver Content—AgxZnSnS4 NCs
3.4. Variation of Zinc Content—Ag2ZnxSnS4 NCs
3.5. Variation of Tin Content—Ag2ZnSnxS4 NCs
3.6. Variation of Sulfur Content—Ag2ZnSnSx NCs
3.7. Resonance Effects in Raman Spectra of AZTS NCs
3.8. IR Phonon Spectra
3.9. Results of Density Functional Theory Calculations
3.10. UV-Vis Absorption
3.11. XPS Study: High-Resolution Core Level, Auger, Valence Band, and Secondary Electron Cut-Off Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Fu, E.; Wang, Y. Fabrication of Cu2ZnSnS4 (CZTS) Nanoparticle Inks for Growth of CZTS Films for Solar Cells. Nanomaterials 2019, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Nazligul, A.S.; Wang, M. Recent Development in Earth-Abundant Kesterite Materials and Their Applications. Sustainability 2020, 12, 5138. [Google Scholar] [CrossRef]
- Giraldo, S.; Jehl, Z.; Placidi, M.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E. Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review. Adv. Mater. 2019, 31, 1806692. [Google Scholar] [CrossRef] [Green Version]
- Gershon, T.; Bishop, D.; Antunez, P.; Singh, S.; Brew, K.W.; Lee, Y.S.; Gunawan, O.; Gokmen, T.; Todorov, T.; Haight, R. Unconventional Kesterites: The Quest to Reduce Band Tailing in CZTSSe. Curr. Opin. Green Sustain. Chem. 2017, 4, 29–36. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, S.; Yan, Q.; Yu, J.; Qiu, W.; Zhou, Z.; Zheng, Q.; Wu, S. Efficient (Cu1−xAgx)2ZnSn(S,Se)4 Solar Cells on Flexible Mo Foils. RSC Adv. 2018, 8, 27686–27694. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Sui, Y.; He, W.; Zeng, F.; Wang, Z.; Wang, F.; Yao, B.; Yang, L. Substitution of Ag for Cu in Cu2ZnSn(S,Se)4: Toward Wide Band Gap Absorbers with Low Antisite Defects for Thin Film Solar Cells. Nanomaterials 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanyuk, Y.E.; Haass, S.G.; Giraldo, S.; Placidi, M.; Tiwari, D.; Fermin, D.J.; Hao, X.; Xin, H.; Schnabel, T.; Kauk-Kuusik, M.; et al. Doping and Alloying of Kesterites. J. Phys. Energy 2019, 1, 044004. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Wang, P.; Huang, B.; Zhang, Q.; Wang, Z.; Liu, Y.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y. Effects of Ag Incorporation on the Band Structures and Conductivity Types of (Cu1−xAgx)2 ZnSnS4 Solid Solutions. ChemPhotoChem 2018, 2, 811–817. [Google Scholar] [CrossRef]
- Liu, N.; Xu, F.; Zhu, Y.; Hu, Y.; Liu, G.; Wu, L.; Wu, K.; Sun, S. Synthesis and Characterization of (Cu1−xAgx)2ZnSnS4 Nanoparticles with Phase Transition and Bandgap Tuning. J. Mater. Sci. Mater. Electron. 2020, 31, 5760–5768. [Google Scholar] [CrossRef]
- Tsuji, I.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Novel Stannite-Type Complex Sulfide Photocatalysts AI2-Zn-AIV-S2 (AI = Cu and Ag; AIV = Sn and Ge) for Hydrogen Evolution under Visible-Light Irradiation. Chem. Mater. 2010, 22, 1402–1409. [Google Scholar] [CrossRef]
- Saha, A.; Figueroba, A.; Konstantatos, G. Ag2ZnSnS4 Nanocrystals Expand the Availability of RoHS Compliant Colloidal Quantum Dots. Chem. Mater. 2020, 32, 2148–2155. [Google Scholar] [CrossRef] [Green Version]
- Stroyuk, O.; Raevskaya, A.; Gaponik, N. Solar Light Harvesting with Multinary Metal Chalcogenide Nanocrystals. Chem. Soc. Rev. 2018, 47, 5354–5422. [Google Scholar] [CrossRef]
- Akhavan, V.A.; Goodfellow, B.W.; Panthani, M.G.; Steinhagen, C.; Harvey, T.B.; Stolle, C.J.; Korgel, B.A. Colloidal CIGS and CZTS Nanocrystals: A Precursor Route to Printed Photovoltaics. J. Solid State Chem. 2012, 189, 2–12. [Google Scholar] [CrossRef]
- Valakh, M.Y.; Dzhagan, V.M.; Babichuk, I.S.; Fontane, X.; Perez-Rodriquez, A.; Schorr, S. Optically Induced Structural Transformation in Disordered Kesterite Cu2ZnSnS4. JETP Lett. 2013, 98, 255–258. [Google Scholar] [CrossRef]
- Dimitrievska, M.; Fairbrother, A.; Fontané, X.; Jawhari, T.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodríguez, A. Multiwavelength Excitation Raman Scattering Study of Polycrystalline Kesterite Cu2ZnSnS4 Thin Films. Appl. Phys. Lett. 2014, 104, 021901. [Google Scholar] [CrossRef] [Green Version]
- Valakh, M.Y.; Kolomys, O.F.; Ponomaryov, S.S.; Yukhymchuk, V.O.; Babichuk, I.S.; Izquierdo-Roca, V.; Saucedo, E.; Pérez-Rodríguez, A.; Morante, J.R.; Schorr, S.; et al. Raman Scattering and Disorder Effect in Cu2ZnSnS4. Phys. Status Solidi RRL Rapid Res. Lett. 2013, 7, 258–261. [Google Scholar] [CrossRef]
- Azhniuk, Y.M.; Prymak, M.V.; Lopushansky, V.V.; Gomonnai, A.V.; Zahn, D.R.T. Optical Characterization of Cd1−xZnxSe Nanocrystals Grown in Borosilicate Glass. Phys. Stat. Sol. B 2014, 251, 669–674. [Google Scholar] [CrossRef]
- Raievska, O.; Stroyuk, O.; Azhniuk, Y.; Solonenko, D.; Barabash, A.; Brabec, C.J.; Zahn, D.R.T. Composition-Dependent Optical Band Bowing, Vibrational, and Photochemical Behavior of Aqueous Glutathione-Capped (Cu, Ag)−In−S Quantum Dots. J. Phys. Chem. C 2020, 124, 19375–19388. [Google Scholar] [CrossRef]
- Dzhagan, V.M.; Litvinchuk, A.P.; Valakh, M.Y.; Kruszynska, M.; Kolny-Olesiak, J.; Himcinschi, C.; Zahn, D.R.T. Raman Scattering in Orthorhombic CuInS2 Nanocrystals. Phys. Stat. Sol. A 2014, 211, 195–199. [Google Scholar] [CrossRef]
- Havryliuk, Y.; Valakh, M.Y.; Dzhagan, V.; Greshchuk, O.; Yukhymchuk, V.; Raevskaya, A.; Stroyuk, O.; Selyshchev, O.; Gaponik, N.; Zahn, D.R.T. Raman Characterization of Cu2ZnSnS4 Nanocrystals: Phonon Confinement Effect and Formation of CuxS Phases. RSC Adv. 2018, 8, 30736–30746. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kempken, B.; Dzhagan, V.; Zahn, D.R.T.; Grzelak, J.; Mackowski, S.; Parisi, J.; Kolny-Olesiak, J. Alloyed CuInS2–ZnS Nanorods: Synthesis, Structure and Optical Properties. CrystEngComm 2015, 17, 5634–5643. [Google Scholar] [CrossRef] [Green Version]
- Raevskaya, A.; Rosovik, O.; Kozytskiy, A.; Stroyuk, O.; Dzhagan, V.; Zahn, D.R.T. Non-Stoichiometric Cu–In–S@ZnS Nanoparticles Produced in Aqueous Solutions as Light Harvesters for Liquid-Junction Photoelectrochemical Solar Cells. RSC Adv. 2016, 6, 100145–100157. [Google Scholar] [CrossRef] [Green Version]
- Llorente, V.B.; Dzhagan, V.M.; Gaponik, N.; Iglesias, R.A.; Zahn, D.R.T.; Lesnyak, V. Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals. J. Phys. Chem. C 2017, 121, 18244–18253. [Google Scholar] [CrossRef]
- Brus, V.V.; Babichuk, I.S.; Orletskyi, I.G.; Maryanchuk, P.D.; Yukhymchuk, V.O.; Dzhagan, V.M.; Yanchuk, I.B.; Solovan, M.M.; Babichuk, I.V. Raman Spectroscopy of Cu-Sn-S Ternary Compound Thin Films Prepared by the Low-Cost Spray-Pyrolysis Technique. Appl. Opt. 2016, 55, B158–B162. [Google Scholar] [CrossRef] [PubMed]
- Guc, M.; Litvinchuk, A.P.; Levcenko, S.; Valakh, M.Y.; Bodnar, I.V.; Dzhagan, V.M.; Izquierdo-Roca, V.; Arushanov, E.; Pérez-Rodríguez, A. Optical Phonons in the Wurtzstannite Cu2ZnGeS4 Semiconductor: Polarized Raman Spectroscopy and First-Principle Calculations. RSC Adv. 2016, 6, 13278–13285. [Google Scholar] [CrossRef]
- Caballero, R.; Garcia-Llamas, E.; Merino, J.M.M.; León, M.; Babichuk, I.; Dzhagan, V.; Strelchuk, V.; Valakh, M. Non-Stoichiometry Effect and Disorder in Cu2ZnSnS4 Thin Films Obtained by Flash Evaporation: Raman Scattering Investigation. Acta Mater. 2013, 65, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Gurieva, G.; Többens, D.M.; Valakh, M.Y.; Schorr, S. Cu-Zn Disorder in Cu2ZnSnS4: A Complementary Neutron Diffraction and Raman Spectroscopy Study. J. Phys. Chem. Solids 2016, 99, 100–104. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Fu, E.; Wang, Y. In-Depth Characterization of Secondary Phases in Cu2ZnSnS4 Film and Its Application to Solar Cells. Nanomaterials 2019, 9, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selyshchev, O.; Havryliuk, Y.; Valakh, M.Y.; Yukhymchuk, V.O.; Raievska, O.; Stroyuk, O.L.; Dzhagan, V.; Zahn, D.R.T. Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu2ZnSnS4 Photovoltaic Absorbers. ACS Appl. Nano Mater. 2020, 3, 5706–5717. [Google Scholar] [CrossRef]
- Babichuk, I.S.; Golovynskyi, S.; Brus, V. Secondary Phases in Cu2ZnSnS4 Films Obtained by Spray Pyrolysis at Different Substrate Temperatures and Cu Contents. Mater. Lett. 2018, 216, 173–175. [Google Scholar] [CrossRef]
- Chen, G.; Wang, W.; Zhang, J.; Huang, Z. Formation Mechanism of Secondary Phases in Cu2ZnSnS4 Growth under Different Copper Content. Mater. Lett. 2016, 186, 98–101. [Google Scholar] [CrossRef]
- Guc, M.; Oliva, F.; Fairbrother, A.; Jawhari, T.; Alcobe, X.; Placidi, M.; Pérez-Rodríguez, A.; Saucedo, E.; Izquierdo-Roca, V. Scripta Materialia Cu-Sn-S System: Vibrational Properties and Coexistence of the Cu2SnS3, Cu3SnS4 and Cu4SnS4 Compounds. Scr. Mater. 2020, 186, 180–184. [Google Scholar] [CrossRef]
- Stroyuk, O.; Raevskaya, A.; Selyshchev, O.; Dzhagan, V.; Gaponik, N.; Zahn, D.R.T.; Eychmüller, A. “Green” Aqueous Synthesis and Optical Characterization of Colloidal Cu2ZnSnS4 Nanocrystal Inks. Sci. Rep. 2018, 8, 13677. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Hong, S. Influences of Silver and Zinc Contents in the Stannite Ag2ZnSnS4 Photoelectrodes on Their Photoelectrochemical Performances in the Saltwater Solution. ACS Appl. Mater. Interfaces 2018, 10, 22130–22142. [Google Scholar] [CrossRef] [PubMed]
- Pietak, K.; Jastrzebski, C.; Zberecki, K.; Jastrzebski, D.J.; Paszkowicz, W.; Podsiadlo, S. Synthesis and Structural Characterization of Ag2ZnSnS4 Crystals. J. Solid State Chem. 2020, 290, 121467. [Google Scholar] [CrossRef]
- Nagaoka, A.; Yoshino, K.; Kakimoto, K.; Nishioka, K. Phase Diagram of the Ag2SnS3—ZnS Pseudobinary System for Ag2ZnSnS4. Crystal Growth. J. Cryst. Growth 2021, 555, 125967. [Google Scholar] [CrossRef]
- Kumar, J.; Ingole, S. Optical Phonons in Pentanary Compound (AgxCu1−x)2ZnSnS4 Semiconductor: A Raman Study. J. Alloy Compd. 2021, 865, 158113. [Google Scholar] [CrossRef]
- Qiu, L.; Xu, J. Fabrication of Ag and Mn Co-Doped Cu2ZnSnS4 Thin Film. Nanomaterials 2019, 9, 1520. [Google Scholar] [CrossRef] [Green Version]
- Online, V.A.; Timmo, K.; Altosaar, M.; Pilvet, M.; Mikli, V.; Grossberg, M.; Danilson, M.; Raadik, T.; Josepson, R.; Kauk-Kuusik, M. The Effect of Ag Alloying of Cu2(Zn,Cd)SnS4 on the Monograin Powder Properties and Solar Cell Performance. J. Mater. Chem. A 2019, 7, 24281–24291. [Google Scholar]
- Chen, X.; Wang, J.; Zhou, W.; Chang, Z.; Kou, D.; Zhou, Z.; Tian, Q.; Meng, Y.; Wu, S. Rational Synthesis of (Cu1−xAgx)2ZnSnS4 Nanocrystals with Low Defect and Tuning Band Gap. Mater. Lett. 2016, 181, 317–320. [Google Scholar] [CrossRef]
- Hu, X.; Pritchett-Montavon, S.; Handwerker, C.; Agrawal, R. Reaction Pathways and Optoelectronic Characterization of Single-Phase Ag2ZnSnS4 Nanoparticles. J. Mater. Res. 2019, 4, 3810–3818. [Google Scholar] [CrossRef]
- Briggs, D.; Seah, M.P. Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy; John Wiley & Sons: Chichester, UK, 1983. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.Z.; Payne, M.C. First Principles Methods Using CASTEP. Z. Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Refson, K.; Tulip, P.R.; Clark, S.J. Variational density-functional perturbation theory for dielectrics and lattice dynamics. Phys. Rev. B 2006, 73, 155114. [Google Scholar] [CrossRef] [Green Version]
- Litvinchuk, A.P.; Dzhagan, V.M.; Yukhymchuk, V.O.; Valakh, M.Y.; Babichuk, I.S.; Parasyuk, O.V.; Piskach, L.V.; Gordan, O.D.; Zahn, D.R.T. Electronic Structure, Optical Properties, and Lattice Dynamics of Orthorhombic Cu2CdGeS4 and Cu2CdSiS4 Semiconductors. Phys. Rev. B 2014, 90, 165201–1–9. [Google Scholar] [CrossRef]
- Dimitrievska, M.; Boero, F.; Litvinchuk, A.P.; Delsante, S.; Borzone, G.; Pérez-Rodríguez, A.; Izquierdo-Roca, V. Structural Polymorphism in “Kesterite” Cu2ZnSnS4: Raman Spectroscopy and First-Principles Calculations Analysis. Inorg. Chem. 2017, 56, 3467–3474. [Google Scholar] [CrossRef] [PubMed]
- Milekhin, A.; Sveshnikova, L.; Duda, T.; Surovtsev, N.; Adichtchev, S.; Zahn, D.R.T. Optical Phonons in Nanoclusters Formed by the Langmuir-Blodgett Technique. Chin. J. Phys. 2011, 49, 63–70. [Google Scholar]
- Cheng, K.; Tsai, W.; Wu, Y. Photo-Enhanced Salt-Water Splitting Using Orthorhombic Ag8SnS6 Photoelectrodes in Photoelectrochemical Cells. J. Power Sources 2016, 317, 81–92. [Google Scholar] [CrossRef]
- Yeryukov, N.A.; Milekhin, A.G.; Sveshnikova, L.L.; Duda, T.A.; Pokrovsky, L.D.; Gutakovskii, A.K.; Batsanov, S.A.; Rodyakina, E.E.; Latyshev, A.V.; Zahn, D.R.T. Synthesis and Characterization of CuxS (x = 1–2) Nanocrystals Formed by the Langmuir–Blodgett Technique. J. Phys. Chem. C 2014, 118, 23409–23414. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J. Characterization of Sprayed CuInS2 Films by XRD and Raman Spectroscopy Measurements. Thin Solid Film. 2010, 518, 6537–6541. [Google Scholar] [CrossRef]
- Muska, K.; Kauk-Kuusik, M.; Altosaar, M.; Pilvet, M.; Grossberg, M.; Volobujeva, O. Synthesis of Cu2ZnSnS4 Monograin Powders with Different Compositions. Energy Procedia 2011, 10, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Babichuk, I.S.; Semenenko, M.O.; Caballero, R.; Datsenko, O.I.; Golovynskyi, S.; Qiu, R.; Li, B.; Qu, J.; Leon, M. Raman Mapping of MoS2 at Cu2ZnSnS4/Mo Interface in Thin Film. Sol. Energy 2020, 205, 154–160. [Google Scholar] [CrossRef]
- Raievska, O.; Stroyuk, O.; Dzhagan, V.; Solonenko, D.; Zahn, D.R.T. Ultra-Small Aqueous Glutathione-Capped Ag–In–Se Quantum Dots: Iuminescence and Vibrational Properties. RSC Adv. 2020, 10, 42178–42193. [Google Scholar] [CrossRef]
- Dzhagan, V.; Kempken, B.; Valakh, M.; Parisi, J.; Kolny-Olesiak, J.; Zahn, D.R.T. Probing the Structure of CuInS2-ZnS Core-Shell and Similar Nanocrystals by Raman Spectroscopy. Appl. Surf. Sci. 2017, 395, 24–28. [Google Scholar] [CrossRef]
- Kempken, B.; Dzhagan, V.; Zahn, D.R.T.; Alcocer, M.J.P.; Kriegel, I.; Scotognella, F.; Parisi, J.; Kolny-Olesiak, J. Synthesis, Optical Properties, and Photochemical Activity of Zinc-Indium-Sulfide Nanoplates. RSC Adv. 2015, 5, 89577–89585. [Google Scholar] [CrossRef] [Green Version]
- Dzhagan, V.M.; Azhniuk, Y.M.; Milekhin, A.G.; Zahn, D.R.T. Vibrational Spectroscopy of Compound Semiconductor Nanocrystals. J. Phys. D Appl. Phys. 2018, 51, 503001. [Google Scholar] [CrossRef]
- Milekhin, A.G.; Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A.; Himcinschi, C.; Zenkevich, E.I.; Zahn, D.R.T. Resonant Raman Scattering of ZnS, ZnO, and ZnS/ZnO Core/Shell Quantum Dots. Appl. Phys. A 2012, 107, 275–278. [Google Scholar] [CrossRef]
- Dzhagan, V.; Milekhin, A.G.; Valakh, M.Y.; Pedetti, S.; Tessier, M.; Dubertret, B.; Zahn, D.R.T. Morphology-Induced Phonon Spectra of CdSe/CdS Nanoplatelets: Core/Shell vs. Core-Crown. Nanoscale 2016, 8, 17204–17212. [Google Scholar] [CrossRef] [Green Version]
- Milekhin, A.G.; Kuznetsov, S.A.; Sveshnikova, L.L.; Duda, T.A.; Milekhin, I.A.; Rodyakina, E.E.; Latyshev, A.V.; Dzhagan, V.M.; Zahn, D.R.T. Surface-Enhanced Infrared Absorption by Optical Phonons in Nanocrystal Monolayers on Au Nanoantenna Arrays. J. Phys. Chem. C 2017, 121, 5779–5786. [Google Scholar] [CrossRef]
- Petrović, M.; Romčević, N.; Trajić, J.; Dobrowolski, W.D.; Romčević, M.; Hadžić, B.; Gilić, M.; Mycielski, A. Far-Infrared Spectroscopy of CdTe1−xSex(In): Phonon Properties. Infrared Phys. Technol. 2014, 67, 323–326. [Google Scholar] [CrossRef]
- Manciu, F.S.; Tallman, R.E.; McCombe, B.D.; Weinstein, B.A.; Lucey, D.W.; Sahoo, Y.; Prasad, P.N. Infrared and Raman Spectroscopies of InP/II–VI Core-Shell Nanoparticles. Phys. E 2005, 26, 14–18. [Google Scholar] [CrossRef]
- Skelton, J.M.; Jackson, A.J.; Dimitrievska, M.; Wallace, S.K.; Walsh, A. Vibrational Spectra and Lattice Thermal Conductivity of Kesterite-Structured Cu2ZnSnS4 and Cu2ZnSnSe4. APL Mater. 2015, 3, 041102. [Google Scholar] [CrossRef] [Green Version]
- Himmrich, M.; Hauseler, H. Far Infrared Studies on Stannite and Wurtzstannite Type Compounds. Spectrochim. Acta 1991, 47, 933–942. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, X.; Xu, B.; Li, W.; Li, J.; Li, J.; Wang, M.; Dong, C.; Ju, P.; Li, J. Enhancing Open-Circuit Voltage of Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells with Ag Substitution. IEEE J. Photovolt. 2017, 7, 874–881. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, B.; Li, Y.; Ding, Z.; Luan, H.; Jia, J.; Li, Y.; Shi, K.; Sui, Y.; Zhang, B. Structure, Optical and Electrical Properties of (Cu1−xAgx)2ZnSn(S,Se)4 Alloy Thin Films for Photovoltaic Application. Mater. Sci. Semicond. Process. 2018, 81, 54–59. [Google Scholar] [CrossRef]
- Grossberg, M.; Krustok, J.; Hages, C.J.; Bishop, D.M.; Gunawan, O.; Scheer, R.; Lyam, S.M.; Hempel, H.; Levcenco, S.; Unold, T. The Electrical and Optical Properties of Kesterites. J. Phys. Energy 2019, 1, 044002. [Google Scholar] [CrossRef]
- Gong, W.; Tabata, T.; Takei, K.; Morihama, M.; Maeda, T.; Wada, T. Crystallographic and Optical Properties of (Cu,Ag)2ZnSnS4 and (Cu,Ag)2ZnSnSe4 Solid Solutions. Phys. Stat. Sol. 2015, 12, 700–703. [Google Scholar]
- Ibrahim, A.; Guchhait, A.; Hadke, S.; Seng, H.L.; Wong, L.H. Silver and Potassium Incorporation in Double-Layer Solution- Processed Cu2ZnSnS4 Solar Cell. ACS Appl. Energy Mater. 2020, 3, 10402–10407. [Google Scholar] [CrossRef]
- Kövér, L.; Moretti, G.; Kovács, Z.; Sanjinés, R.; Cserny, I.; Margaritondo, G.; Pálinkás, J.; Adachi, H. High Resolution Photoemission and Auger Parameter Studies of Electronic Structure of Tin Oxides. J. Vac. Sci. Technol. A 1995, 13, 1382–1388. [Google Scholar] [CrossRef]
- Whittles, T.J. Electronic Characterisation of Earth-Abundant Sulphides for Solar Photovoltaics; Springer: Cham, Switzerland, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzhagan, V.; Selyshchev, O.; Havryliuk, Y.; Mazur, N.; Raievska, O.; Stroyuk, O.; Kondratenko, S.; Litvinchuk, A.P.; Valakh, M.Y.; Zahn, D.R.T. Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals. Materials 2021, 14, 3593. https://doi.org/10.3390/ma14133593
Dzhagan V, Selyshchev O, Havryliuk Y, Mazur N, Raievska O, Stroyuk O, Kondratenko S, Litvinchuk AP, Valakh MY, Zahn DRT. Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals. Materials. 2021; 14(13):3593. https://doi.org/10.3390/ma14133593
Chicago/Turabian StyleDzhagan, Volodymyr, Oleksandr Selyshchev, Yevhenii Havryliuk, Nazar Mazur, Oleksandra Raievska, Oleksandr Stroyuk, Serhiy Kondratenko, Alexander P. Litvinchuk, Mykhailo Ya. Valakh, and Dietrich R. T. Zahn. 2021. "Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals" Materials 14, no. 13: 3593. https://doi.org/10.3390/ma14133593
APA StyleDzhagan, V., Selyshchev, O., Havryliuk, Y., Mazur, N., Raievska, O., Stroyuk, O., Kondratenko, S., Litvinchuk, A. P., Valakh, M. Y., & Zahn, D. R. T. (2021). Raman and X-ray Photoelectron Spectroscopic Study of Aqueous Thiol-Capped Ag-Zn-Sn-S Nanocrystals. Materials, 14(13), 3593. https://doi.org/10.3390/ma14133593