Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives
Abstract
:1. Introduction
2. Difficulties with Composite Disposal
3. Usual Recycling Procedures
3.1. Mechanical Recycling
3.2. Thermal Recycling
3.3. Chemical Recycling
4. Utilization of Sub- and Supercritical Fluids
Fluid | Critical Data * | Reference |
---|---|---|
water | Tc = 647.1 K; Pc = 220.6 bar | [69] |
methanol | Tc = 512.6 K; Pc = 81.0 bar | [70] |
ethanol | Tc = 514.0 K; Pc = 61.4 bar | [71] |
propanol | Tc = 536.8 K; Pc = 52.0 bar | [71] |
acetone | Tc = 508.0 K; Pc = 48.0 bar | [72] |
5. Table Review
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ac | acetone |
BuOH | butanol |
DMF | N,N-dimethylformamide |
EtOH | ethanol |
H2O | water |
H2O2 | hydrogen peroxide |
MEK | methyl ethyl ketone |
MeOH | methanol |
N2 | nitrogen |
PrOH | propanol |
τ | tensile strength of the recovered carbon fiber |
References
- Chalaye, H. Chalaye Composite Materials: Drive and Innovation 2002. Available online: http://www.epsilon.insee.fr/jspui/bitstream/1/56266/1/4p158-anglais.pdf (accessed on 27 January 2021).
- Pompidou, S.; Prinçaud, M.; Perry, N.; Leray, D. Recycling of carbon fiber: Identification of bases for a synergy between recyclers and designers. In Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering; American Society of Mechanical Engineers: Nantes, France, 2012; Volume 3, pp. 551–560. [Google Scholar]
- Pickering, S.J. Recycling thermoset composite materials. In Wiley Encyclopedia of Composites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; p. weoc214. ISBN 978-1-118-09729-8. [Google Scholar]
- Europe Composites Market Size; Industry Growth Report, 2019–2025. Available online: https://www.grandviewresearch.com/industry-analysis/europe-composites-market (accessed on 27 January 2021).
- McConnell, V.P. Launching the carbon fibre recycling industry. Reinf. Plast. 2010, 54, 33–37. [Google Scholar] [CrossRef]
- Navarro, C.A.; Giffin, C.R.; Zhang, B.; Yu, Z.; Nutt, S.R.; Williams, T.J. A structural chemistry look at composites recycling. Mater. Horiz. 2020, 7, 2479–2486. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. [Google Scholar] [CrossRef]
- Lee, C.-K.; Kim, Y.-K.; Pruitichaiwiboon, P.; Kim, J.-S.; Lee, K.-M.; Ju, C.-S. Assessing Environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysis. Transp. Res. Part D Transp. Environ. 2010, 15, 197–203. [Google Scholar] [CrossRef]
- Liu, Y.; Farnsworth, M.; Tiwari, A. A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2017, 140, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Balasubramaniam, B.; Gupta, R.K. Recycling, Reclamation and re-manufacturing of carbon fibres. Curr. Opin. Green Sustain. Chem. 2018, 13, 86–90. [Google Scholar] [CrossRef]
- Zhang, J.; Chevali, V.S.; Wang, H.; Wang, C.-H. Current status of carbon fibre and carbon fibre composites recycling. Compos. B Eng. 2020, 193, 108053. [Google Scholar] [CrossRef]
- Anane-Fenin, K.; Akinlabi, E.T. Recycling of Fibre Reinforced Composites: A Review of Current Technologies. In Proceedings of the 4th International Conference on Development and Investment in Infrastructure—Strategies for Africa, Livingstone, Zambia, 30 August–1 September 2017; p. 12. [Google Scholar]
- Pakdel, E.; Kashi, S.; Varley, R.; Wang, X. Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes. Resour. Conserv. Recycl. 2021, 166, 105340. [Google Scholar] [CrossRef]
- A Review on the Recycling of Waste Carbon Fibre/Glass Fibre-Reinforced Composites: Fibre Recovery, Properties and Life-Cycle Analysis. Available online: https://link.springer.com/article/10.1007/s42452-020-2195-4 (accessed on 18 May 2021).
- Pickering, S.J. Recycling technologies for thermoset composite materials—Current status. Compos. A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Meng, F.; Olivetti, E.A.; Zhao, Y.; Chang, J.C.; Pickering, S.J.; McKechnie, J. Comparing Life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options. ACS Sustain. Chem. Eng. 2018, 6, 9854–9865. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Banatao, D.R.; Pastine, S.J.; Latteri, A.; Cicala, G. Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. Compos. B Eng. 2016, 104, 17–25. [Google Scholar] [CrossRef]
- TradeWheel. Carbon Fiber Price per Kg. Available online: https://www.tradewheel.com/p/carbon-fiber-price-per-kg-665053/ (accessed on 8 September 2020).
- Kim, Y.N.; Kim, Y.-O.; Kim, S.Y.; Park, M.; Yang, B.; Kim, J.; Jung, Y.C. Application of supercritical water for green recycling of epoxy-based carbon fiber reinforced plastic. Compos. Sci. Technol. 2019, 173, 66–72. [Google Scholar] [CrossRef]
- Perry, N.; Bernard, A.; Laroche, F.; Pompidou, S. Improving design for recycling—Application to composites. CIRP Ann. 2012, 61, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Utekar, S.; Suriya, V.K.; More, N.; Rao, A. Comprehensive study of recycling of thermosetting polymer composites—driving force, challenges and methods. Compos. B Eng. 2021, 207, 108596. [Google Scholar] [CrossRef]
- Pillain, B.; Loubet, P.; Pestalozzi, F.; Woidasky, J.; Erriguible, A.; Aymonier, C.; Sonnemann, G. Positioning supercritical solvolysis among innovative recycling and current waste management scenarios for carbon fiber reinforced plastics thanks to comparative life cycle assessment. J. Supercrit. Fluids 2019, 154, 104607. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Seidlitz, H.; Krenz, J.; Goracy, K.; Urbaniak, M.; Rösch, J.J. Recycling of carbon fiber reinforced composite polymers—Review—Part 2: Recovery and application of recycled carbon fibers. Polymers 2020, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Morales Ibarra, R. Recycling of thermosets and their composites. In Thermosets; Elsevier: Amsterdam, The Netherlands, 2018; pp. 639–666. ISBN 978-0-08-101021-1. [Google Scholar]
- Yang, Y.; Boom, R.; Irion, B.; van Heerden, D.-J.; Kuiper, P.; de Wit, H. Recycling of composite materials. Chem. Eng. Process. Process. Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Thomas, R.; Vijayan, P.; Thomas, S. Recycling of thermosetting polymers: Their blends and composites. In Recent Developments in Polymer Recycling; Fainleib, A., Grigoryeva, O., Eds.; Transworld Research Network: Trivandrum, India, 2012; Chapter 4; p. 33. [Google Scholar]
- Palmer, J.; Ghita, O.R.; Savage, L.; Evans, K.E. Successful closed-loop recycling of thermoset composites. Compos. A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Howarth, J.; Mareddy, S.S.R.; Mativenga, P.T. Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. J. Clean. Prod. 2014, 81, 46–50. [Google Scholar] [CrossRef]
- Pickering, S.J.; Yip, H.; Kennerley, J.R.; Kelly, R.; Rudd, C.D. The recycling of carbon fibre composites using a fluidised bed process. In FRC 2000—Composites for the Millennium; Elsevier: Amsterdam, The Netherlands, 2000; pp. 565–572. ISBN 978-1-85573-550-7. [Google Scholar]
- Torres, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Legarreta, J.A.; Cabrero, M.A.; González, A.; Chomón, M.J.; Gondra, K. Recycling by pyrolysis of thermoset composites: Characteristics of the liquid and gaseous fuels obtained. Fuel 2000, 79, 897–902. [Google Scholar] [CrossRef]
- Cheung, K.-Y.; Lee, K.-L.; Lam, K.-L.; Chan, T.-Y.; Lee, C.-W.; Hui, C.-W. Operation strategy for multi-stage pyrolysis. J. Anal. Appl. Pyrolysis 2011, 91, 165–182. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Prabhakara, H.M.; Bramer, E.A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Pohjakallio, M.; Vuorinen, T.; Oasmaa, A. Chemical routes for recycling—Dissolving, catalytic, and thermochemical technologies. In Plastic Waste and Recycling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 359–384. ISBN 978-0-12-817880-5. [Google Scholar]
- Lam, K.-L.; Oyedun, A.O.; Cheung, K.-Y.; Lee, K.-L.; Hui, C.-W. Modelling pyrolysis with dynamic heating. Chem. Eng. Sci. 2011, 66, 6505–6514. [Google Scholar] [CrossRef]
- Meyer, L.O.; Schulte, K.; Grove-Nielsen, E. CFRP-recycling following a pyrolysis route: Process optimization and potentials. J. Compos. Mater. 2009, 43, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Giorgini, L.; Benelli, T.; Mazzocchetti, L.; Leonardi, C.; Zattini, G.; Minak, G.; Dolcini, E.; Tosi, C.; Montanari, I. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production. In Proceedings of the 7th International Conference on Times of Polymers and Composites (TOP), Ischia, Italy, 22–26 June 2014; pp. 354–357. [Google Scholar]
- Morin, C.; Loppinet-Serani, A.; Cansell, F.; Aymonier, C. Near- and supercritical solvolysis of Carbon Fibre Reinforced Polymers (CFRPs) for recycling carbon fibers as a valuable resource: State of the art. J. Supercrit. Fluids 2012, 66, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Deng, G.; Chen, X.; Gao, X.; Guo, Q.; Xu, C.; Zhou, L. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition. Compos. Sci. Technol. 2017, 151, 243–251. [Google Scholar] [CrossRef]
- Yildirir, E.; Onwudili, J.A.; Williams, P.T. Recovery of carbon fibres and production of high quality fuel gas from the chemical recycling of carbon fibre reinforced plastic wastes. J. Supercrit. Fluids 2014, 92, 107–114. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.; Leeke, G.A. A Step Change in the Recycling of Composite Materials. In Proceedings of the 16th European Conference on Composite Materials, Seville, Spain, 22–26 June 2014; p. 8. [Google Scholar]
- Xu, P.; Li, J.; Ding, J. Chemical Recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N,N-dimethylformamide. Compos. Sci. Technol. 2013, 82, 54–59. [Google Scholar] [CrossRef]
- Li, J.; Xu, P.-L.; Zhu, Y.-K.; Ding, J.-P.; Xue, L.-X.; Wang, Y.-Z. A promising strategy for chemical recycling of carbon fiber/thermoset composites: Self-accelerating decomposition in a mild oxidative system. Green Chem. 2012, 14, 3260. [Google Scholar] [CrossRef]
- Morales Ibarra, R.; Sasaki, M.; Goto, M.; Quitain, A.T.; García Montes, S.M.; Aguilar-Garib, J.A. Carbon fiber recovery using water and benzyl alcohol in subcritical and supercritical conditions for chemical recycling of thermoset composite materials. J. Mater. Cycles Waste Manag. 2015, 17, 369–379. [Google Scholar] [CrossRef]
- Fleming, O.S.; Kazarian, S.G. Polymer processing with supercritical fluids. In Supercritical Carbon Dioxide; Kemmere, M.F., Meyer, T., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 205–238. ISBN 978-3-527-60672-6. [Google Scholar]
- Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Knez Hrnčič, M. Are supercritical fluids solvents for the future? Chem. Eng. Process. Process Intensif. 2019, 141, 107532. [Google Scholar] [CrossRef]
- Loppinet-Serani, A.; Aymonier, C.; Cansell, F. Supercritical water for environmental technologies. J. Chem. Technol. Biotechnol. 2010, 85, 583–589. [Google Scholar] [CrossRef]
- Hrnčič, M.K.; Kravanja, G.; Knez, Ž. Hydrothermal treatment of biomass for energy and chemicals. Energy 2016, 116, 1312–1322. [Google Scholar] [CrossRef]
- Brunner, G. Applications of supercritical fluids. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 321–342. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, Z.; Feng, L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water. Mater. Des. 2010, 31, 999–1002. [Google Scholar] [CrossRef]
- Khalil, Y.F. Sustainability assessment of solvolysis using supercritical fluids for carbon fiber reinforced polymers waste management. Sustain. Prod. Consum. 2019, 17, 74–84. [Google Scholar] [CrossRef]
- Machida, H.; Takesue, M.; Smith, R.L. Green chemical processes with supercritical fluids: Properties, materials, separations and energy. J. Supercrit. Fluids 2011, 60, 2–15. [Google Scholar] [CrossRef]
- Huang, H.; Liu, W.; Liu, Z. An additive manufacturing-based approach for carbon fiber reinforced polymer recycling. CIRP Ann. 2020, 69, 33–36. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Jiang, Z.; Tang, T. Chemical recycling of carbon fibre reinforced epoxy resin composites in subcritical water: Synergistic effect of phenol and KOH on the decomposition efficiency. Polym. Degrad. Stab. 2012, 97, 214–220. [Google Scholar] [CrossRef]
- Yuyan, L.; Guohua, S.; Linghui, M. Recycling of carbon fibre reinforced composites using water in subcritical conditions. Mater. Sci. Eng. A 2009, 520, 179–183. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S.; Wong, K.H. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Compos. A Appl. Sci. Manuf. 2008, 39, 454–461. [Google Scholar] [CrossRef]
- Prinçaud, M.; Aymonier, C.; Loppinet-Serani, A.; Perry, N.; Sonnemann, G. Environmental Feasibility of the recycling of carbon fibers from CFRPs by solvolysis using supercritical water. ACS Sustain. Chem. Eng. 2014, 2, 1498–1502. [Google Scholar] [CrossRef] [Green Version]
- Okajima, I.; Watanabe, K.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical Recycling of Carbon Fiber Reinforced Plastic with Supercritical Alcohol. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1040.1841&rep=rep1&type=pdf (accessed on 26 February 2021).
- Okajima, I.; Hiramatsu, M.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. J. Supercrit. Fluids 2014, 91, 68–76. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; García-Serna, J.; Dodds, C.; Hyde, J.; Poliakoff, M.; Cocero, M.J.; Kingman, S.; Pickering, S.; Lester, E. Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. J. Supercrit. Fluids 2008, 46, 83–92. [Google Scholar] [CrossRef]
- Hyde, J.R.; Lester, E.; Kingman, S.; Pickering, S.; Wong, K.H. Supercritical Propanol, a possible route to composite carbon fibre recovery: A viability study. Compos. A Appl. Sci. Manuf. 2006, 37, 2171–2175. [Google Scholar] [CrossRef]
- Yan, H.; Lu, C.; Jing, D.; Chang, C.; Liu, N.; Hou, X. Recycling of carbon fibers in epoxy resin composites using supercritical 1-propanol. New Carbon Mater. 2016, 31, 46–54. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.; Lester, E.; Turner, T.; Wong, K.; Warrior, N. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol. Compos. Sci. Technol. 2009, 69, 192–198. [Google Scholar] [CrossRef]
- Okajima, I.; Sako, T. Recycling fiber-reinforced plastic using supercritical acetone. Polym. Degrad. Stab. 2019, 163, 1–6. [Google Scholar] [CrossRef]
- Knight, C.C.; Zeng, C.; Zhang, C.; Liang, R. Fabrication and properties of composites utilizing reclaimed woven carbon fiber by sub-critical and supercritical water recycling. Mater. Chem. Phys. 2015, 149–150, 317–323. [Google Scholar] [CrossRef]
- Okajima, I.; Watanabe, K.; Haramiishi, S.; Nakamura, M.; Shimamura, Y.; Sako, T. Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids. J. Supercrit. Fluids 2017, 119, 44–51. [Google Scholar] [CrossRef]
- Sokoli, H.U.; Beauson, J.; Simonsen, M.E.; Fraisse, A.; Brøndsted, P.; Søgaard, E.G. Optimized process for recovery of glass- and carbon fibers with retained mechanical properties by means of near- and supercritical fluids. J. Supercrit. Fluids 2017, 124, 80–89. [Google Scholar] [CrossRef]
- Kestin, J.; Sengers, J.V.; Kamgar-Parsi, B.; Levelt Sengers, J.M.H. Thermophysical properties of fluid H2O. J. Phys. Chem. Ref. Data 1984, 13, 175–183. [Google Scholar] [CrossRef]
- Isothermal Properties for Methanol. Available online: https://webbook.nist.gov/cgi/fluid.cgi?T=313.15&PLow=1&PHigh=100&PInc=1&Applet=on&Digits=5&ID=C67561&Action=Load&Type=IsoTherm&TUnit=K&PUnit=bar&DUnit=kg%2Fm3&HUnit=kJ%2Fmol&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm&RefState=DEF (accessed on 21 April 2021).
- Gude, M.; Teja, A.S. Vapor-liquid critical properties of elements and compounds. 4. Aliphatic alkanols. J. Chem. Eng. Data 1995, 40, 1025–1036. [Google Scholar] [CrossRef]
- Informatics, N.O.; NIST Standard Reference Database. Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 22 April 2021).
- Jiang, G.; Pickering, S.J.; Lester, E.; Blood, P.; Warrior, N.; Pickering, S.J. Recycling carbon fibre/epoxy resin composites using supercritical propanol. In Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan, 8–13 July 2007; p. 5. [Google Scholar]
- Knight, C.C.; Zeng, C.; Zhang, C.; Wang, B. Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water. Environ. Technol. 2012, 33, 639–644. [Google Scholar] [CrossRef]
- Goto, M.; Jin, F.; Zhou, Q.; Wu, B. Supercritical water process for the chemical recycling of waste plastics. In AIP Conference Proceedings, Proceedings of the AIP 2nd International Symposium on Aqua Science, Water Resource and Low Carbon Energy, Sanya Hainan, China, 10 December 2009; AIP Publishing: Melville, NY, USA, 2010; pp. 169–172. [Google Scholar]
- Reaction Kinetics of CFRP Degradation in Supercritical Fluids. Available online: https://link.springer.com/article/10.1007/s10924-017-1114-2 (accessed on 1 June 2021).
- Dauguet, M.; Mantaux, O.; Perry, N.; Zhao, Y.F. Recycling of CFRP for high value applications: Effect of sizing removal and environmental analysis of the supercritical fluid solvolysis. Procedia CIRP 2015, 29, 734–739. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S. Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: A review. Chem. Pap. 2020, 74, 3785–3807. [Google Scholar] [CrossRef]
Recycling Method | Parameters | Tensile Strength of Recovered Fiber | Reference |
---|---|---|---|
Thermal (pyrolysis) | 400–600 °C | undefined | [37] |
10 °C/min | |||
120 min | |||
air and N2 atmosphere | |||
Thermal (pyrolysis) | 500–600 °C | undefined | [38] |
150 min | |||
Chemical (solvolysis) | 90 °C | τ > 95% | [43] |
30 min | |||
in a solution of H2O2/DMF (1:1, v/v) | |||
Chemical | 60 °C | τ > 95% | [44] |
30 min | |||
Ac and H2O2 | |||
Chemical (subcritical) | 260–290 °C | τ = 98.2% | [56] |
10–400 bar | |||
75–105 min | |||
H2O | |||
Chemical (near- and supercritical) | 250–400 °C | 90% < τ < 98% | [57] |
40–270 bar | |||
30 min | |||
H2O | |||
Chemical (supercritical) | 400 °C | undefined | [58] |
250 bar | |||
30 min | |||
H2O | |||
Chemical (supercritical) | 270 °C | τ = 91% | [60] |
80 bar | |||
90 min | |||
MeOH | |||
Chemical (supercritical) | above 450 °C | τ ≈ 95.4% | [62] |
above 50 bar | |||
several minutes | |||
PrOH | |||
Chemical (supercritical) | 260–340 °C | 94.6% < τ < 95.2% | [63] |
120 min | |||
1-PrOH | |||
Chemical (supercritical) | 310 °C | 88.6% < τ < 99.1% | [64] |
52 bar | |||
20 min | |||
n-PrOH | |||
Chemical (supercritical) | PrOH | undefined | [65] |
20–140 bar | |||
60 min | |||
Ac | |||
Chemical (sub- and supercritical) | 320 °C | negligible reduction | [67] |
10 bar | |||
20 min | |||
MeOH, EtOH, 1-PrOH, 1-BuOH, 2-BuOH, tert-BuOH, Ac, MEK | |||
Chemical (sub- and supercritical) | 300–450 °C | 85% < τ < 99% | [61] |
47–153 bar 15.5 min | |||
MeOH, EtOH, 1-PrOH, Ac |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borjan, D.; Knez, Ž.; Knez, M. Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials 2021, 14, 4191. https://doi.org/10.3390/ma14154191
Borjan D, Knez Ž, Knez M. Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials. 2021; 14(15):4191. https://doi.org/10.3390/ma14154191
Chicago/Turabian StyleBorjan, Dragana, Željko Knez, and Maša Knez. 2021. "Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives" Materials 14, no. 15: 4191. https://doi.org/10.3390/ma14154191
APA StyleBorjan, D., Knez, Ž., & Knez, M. (2021). Recycling of Carbon Fiber-Reinforced Composites—Difficulties and Future Perspectives. Materials, 14(15), 4191. https://doi.org/10.3390/ma14154191