The Method of Computing Diameter of Nano Wood Powder Based on Geometric Figure Fitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shape Context
2.2. Hole Filling
2.3. Contour Extraction
2.4. Minimum External Geometry
3. Results and Discussion
3.1. Extraction of the Contour of Wood Powder Particles
3.2. Shape Context Matching
3.3. Calculation of the Minimum External Geometry
3.4. Calculation of the Diameter of Wood Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Ma, Y.; Yang, C.M. Application of nano-sized wood powder in wood industry. For. Mach. Woodwork. Equip. 2005, 11, 4–6. [Google Scholar]
- Wang, H.; Ma, Y.; Yang, C.M.; Ren, C.Q. Process and scale calculation of nano-sized wood powder. Wood Process. Mach. 2005, 06, 11–14. [Google Scholar]
- Yang, C.M.; Ma, Y.; Zhao, Y.; Sun, Y.H. Processing principle and motion analysis of subnanometer wood powder. J. Northeast. For. Univ. 2012, 40, 89–92. [Google Scholar]
- Ren, H.; Liu, M.; Shen, W.; Jiang, S.H. Detection and analysis of mesh number of wood powder based on image processing. For. Mach. Woodwork. Equip. 2014, 42, 41–44. [Google Scholar]
- Sun, Y.H.; Ma, Y.; Yang, C.M. The technology of subnanometer wood powder pulverization and the principle of equipment composition. Wood Process. Mach. 2009, 20, 12–16. [Google Scholar]
- Sun, Y.H. Study on the Technology and Equipment of Subnanometer Wood Powder Drift Dynamic Separation; Northeast Forestry University: Harbin, China, 2009. [Google Scholar]
- Yang, L.Y.; Ma, Y. Present Situations of Domestic and Foreign Nanometer Lime Pyrolignite Decomposition Fundamental Research. For. Mach. Woodwork. Equip. 2007, 4, 9–11. [Google Scholar]
- Yang, C.M.; Ma, Y.; Guo, X.R.; Zhang, L.; Ma, J. The mechanism of PM2.5 filter in micro-nano wood fiber powder fabric. Silvae Sin. 2013, 49, 131–134. [Google Scholar]
- Miao, L.; Huang, Y.; Chen, Y.; Zhai, Q.X. Research and Application of Nanomaterials in Adhesive Modification. China Adhes. 2008, 10, 55–58. [Google Scholar]
- Yang, C.M.; Qi, Y.J.; Sun, Y.H. Analysis of practical mesh number of subnanometer wood powder formation and its application prospect. J. Northeast. For. Univ. 2008, 10, 63–64, 72. [Google Scholar]
- Yang, C.M.; Qi, Y.J. Formation mechanism of low energy consumption of subnanometer wood powder. For. Sci. Technol. 2008, 05, 45–47. [Google Scholar]
- Fan, C.S.; Yang, D.X.; Yang, C.M. The Preparation Method of the Softwood Micro Nano Wood Powder. J. West. For. Sci. 2015, 44, 54–58, 62. [Google Scholar]
- Yang, D.X.; Fan, C.S. Analysis of transport and deposition characteristics of micro and nano wood powder particles. Environ. Eng. 2015, 33, 581–585. [Google Scholar]
- Shen, J.Z.; Zhang, Y.N.; Liu, T. Shape matching based on shape context. Microelectron. Comput. 2005, 22, 144–146. [Google Scholar]
- Sun, G.D.; Xu, W.; Liang, Y.Q.; Zhao, D.X. An image recognition algorithm for missing train retaining key based on shape context. J. Railw. Sci. Eng. 2014, 11, 127–131. [Google Scholar]
- Wu, X.Y.; He, Y.; Yang, L.; Zhang, Y.C. Binary image retrieval based on improved shape context feature. Opt. Precis. Eng. 2015, 23, 302–309. [Google Scholar]
- Han, M.; Zheng, D.C. Shape recognition algorithm based on fuzzy shape context features. Acta Autom. Sin. 2012, 38, 68–75. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J.T.; Bai, X. Research and prospect of shape matching method. Acta Autom. Sin. 2012, 38, 889–910. [Google Scholar] [CrossRef]
- Liu, W.S.; Zheng, D.C.; Han, M. A shape matching method based on improved landform shape context. Acta Autom. Sin. 2017, 43, 1749–1758. [Google Scholar]
- Zhang, D.C.; Zhou, C.G.; Zhou, Q.; Chi, S.Z.; Wang, S.J. An algorithm for hole filling based on contour. J. Nat. Sci. Jilin Univ. 2011, 49, 82–86. [Google Scholar]
- Mei, X.J.; Zhao, W.L.; Shao, L.D. Point cloud hole filling algorithm based on hole segmentation. Mech. Electr. Eng. 2008, 25, 56–59. [Google Scholar]
- Li, W.B.; Wang, C.S. Holes filling algorithm based on boundary information. Comput. Eng. Des. 2008, 15, 3958–3959, 3962. [Google Scholar]
- Zhang, Y.; Zeng, L.B.; Wu, Q.S.; Xie, W.J. A fast hole filling algorithm for arbitrary shaped region. Comput. Appl. Res. 2004, 12, 136, 155–156. [Google Scholar]
- Liu, H.F.; Zhang, C.; Luo, J.; Lin, F.L. Automatic hole filling algorithm based on area enveloping rectangles. Command Inf. Syst. Technol. 2017, 8, 77–81. [Google Scholar]
- Zhang, Y.; Li, C.H. Filling algorithm of arbitrary shape region based on boundary tracking. Comput. Eng. Des. 2015, 36, 725–728. [Google Scholar]
- Jiang, Q.; Shao, F.; Gao, W.; Chen, Z.; Yi, G.; Sung, Y. Unified No-Reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans. Image Process. 2019, 28, 1866–1881. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Shao, F.; Lin, W.; Gu, K.; Jiang, G.; Sun, H. Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Trans. Multimed. 2018, 20, 2035–2048. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Tang, Z.W.; Chen, X.W.; Zhang, X.M.; Ye, C. Research on image retrieval algorithm based on combination of color and shape features. J. Signal Process. Syst. 2021, 93, 139–146. [Google Scholar]
- Lu, R.; Fan, Y.; Chen, N.N.; Wang, J.B. A fast algorithm for extracting the minimum encasing rectangle of target image. Comput. Eng. 2010, 36, 178–180. [Google Scholar]
Number of Iterations | Matching Points | Bending Energy Minimization | AFF Cost | SC Cost |
---|---|---|---|---|
1 | 81 | 3.5742 × 10−6 | 0.35099 | 0.18202 |
2 | 91 | 0.059132 | 0.20570 | 0.10958 |
3 | 95 | 0.080640 | 0.17639 | 0.052254 |
4 | 95 | 0.078216 | 0.14836 | 0.046414 |
5 | 95 | 0.077054 | 0.15714 | 0.045859 |
6 | 95 | 0.077054 | 0.15714 | 0.046517 |
Number of Iterations | Circular | Square | |||||||
---|---|---|---|---|---|---|---|---|---|
Sampling Points | Bending Energy | AFF Cost | SC Cost | Sampling Points | Bending Energy | AFF Cost | SC Cost | ||
Wood powder granules 1 | 1 | 37 | 0.000001 | 0.77075 | 0.44625 | 37 | 0.000001 | 0.79356 | 0.47729 |
2 | 37 | 0.05495 | 1.16680 | 0.23514 | 37 | 0.06717 | 0.86060 | 0.20302 | |
3 | 40 | 0.03920 | 1.19980 | 0.14930 | 37 | 0.05572 | 0.97890 | 0.17561 | |
4 | 42 | 0.04117 | 1.18900 | 0.13052 | 37 | 0.03451 | 0.98428 | 0.16544 | |
5 | 42 | 0.04378 | 1.19460 | 0.12575 | 38 | 0.03206 | 0.98909 | 0.15200 | |
6 | 42 | 0.04378 | 1.19460 | 0.12436 | 37 | 0.02592 | 1.00980 | 0.15472 | |
Wood powder granules 2 | 1 | 37 | 0.000005 | 0.45920 | 0.24640 | 37 | 0.000001 | 0.19076 | 0.20934 |
2 | 41 | 0.02717 | 0.62606 | 0.16391 | 39 | 0.06283 | 0.35646 | 0.18307 | |
3 | 41 | 0.02541 | 0.63584 | 0.12281 | 38 | 0.06929 | 0.39173 | 0.15962 | |
4 | 40 | 0.02811 | 0.63945 | 0.12104 | 39 | 0.07017 | 0.37001 | 0.15637 | |
5 | 40 | 0.02804 | 0.63937 | 0.11968 | 38 | 0.06764 | 0.38727 | 0.15848 | |
6 | 40 | 0.02804 | 0.63937 | 0.11968 | 38 | 0.06850 | 0.37807 | 0.16507 | |
Wood powder granules 3 | 1 | 37 | 0.000009 | 0.56011 | 0.31992 | 37 | 0.0000003 | 0.55287 | 0.29962 |
2 | 39 | 0.04059 | 0.80981 | 0.20446 | 37 | 0.04057 | 0.62816 | 0.21282 | |
3 | 45 | 0.03793 | 0.84842 | 0.13430 | 38 | 0.05868 | 0.67458 | 0.16807 | |
4 | 44 | 0.03775 | 0.86198 | 0.12376 | 39 | 0.06126 | 0.61969 | 0.16481 | |
5 | 44 | 0.03781 | 0.87760 | 0.12407 | 38 | 0.05728 | 0.63549 | 0.15354 | |
6 | 44 | 0.03885 | 0.89783 | 0.12386 | 41 | 0.06615 | 0.64970 | 0.15167 | |
Wood powder granules 4 | 1 | 37 | 0.000003 | 0.68498 | 0.41259 | 37 | 0.000001 | 0.64042 | 0.43226 |
2 | 37 | 0.07130 | 0.96566 | 0.23726 | 37 | 0.09679 | 0.85036 | 0.29749 | |
3 | 37 | 0.04679 | 0.94328 | 0.15079 | 37 | 0.08965 | 0.93991 | 0.19739 | |
4 | 37 | 0.05537 | 0.96406 | 0.14886 | 37 | 0.07088 | 0.98707 | 0.18840 | |
5 | 38 | 0.05852 | 1.00540 | 0.14514 | 37 | 0.06786 | 1.01160 | 0.17912 | |
6 | 37 | 0.05820 | 1.03180 | 0.14626 | 37 | 0.06992 | 1.01380 | 0.18013 |
Number of Wood Powder | Software Measurement Value/μm | Measured Value in this Paper/μm | Error |
---|---|---|---|
Wood powder particles 1 | 172.64 | 168.62 | 0.02 |
Wood powder particles 2 | 127.45 | 131.64 | 0.03 |
Wood powder particles 3 | 43.36 | 44.06 | 0.02 |
Wood powder particles 4 | 67.53 | 66.81 | 0.01 |
Number of Wood Powder | Calculated Value by Software | Calculated Value in this Paper | Error |
---|---|---|---|
Wood powder particles 1 | 86.89 | 88.96 | 2.07 |
Wood powder particles 2 | 117.69 | 113.95 | 3.75 |
Wood powder particles 3 | 345.94 | 340.44 | 5.50 |
Wood powder particles 4 | 222.12 | 224.52 | 2.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Yang, X.; Ma, J.; Wang, J. The Method of Computing Diameter of Nano Wood Powder Based on Geometric Figure Fitting. Materials 2021, 14, 4319. https://doi.org/10.3390/ma14154319
Zhao L, Yang X, Ma J, Wang J. The Method of Computing Diameter of Nano Wood Powder Based on Geometric Figure Fitting. Materials. 2021; 14(15):4319. https://doi.org/10.3390/ma14154319
Chicago/Turabian StyleZhao, Lei, Xueling Yang, Jun Ma, and Jianhua Wang. 2021. "The Method of Computing Diameter of Nano Wood Powder Based on Geometric Figure Fitting" Materials 14, no. 15: 4319. https://doi.org/10.3390/ma14154319
APA StyleZhao, L., Yang, X., Ma, J., & Wang, J. (2021). The Method of Computing Diameter of Nano Wood Powder Based on Geometric Figure Fitting. Materials, 14(15), 4319. https://doi.org/10.3390/ma14154319