Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Mechanical Properties
4. Conclusions
- The microstructure does not show any variation before and after heat treatments (direct aging 200 °C/4 h, T6) between the 50 and 90-samples in the same conditions, but the decrease of hatch spacing induces higher effects than the increase in layer thickness. In fact, the 90-samples are characterized by a finer microstructure formed by a mixture of columnar and equiaxed grains than the 50-samples despite the similar energy density values (∆φ = 6 J/(mm3)).
- The microstructure shows a great variation only after the T6 HT, where the Si eutectic network is destroyed and coarsened Si eutectic particles are formed. However, the ellipsoidal shape of the molten pools remains visible in the XY plane, and these could still influence the fracture mechanisms as well as in the samples directly aged. In the T6 heat-treated samples the crack propagates among the Si coarsened particles. Within the full-cellular structure, the crack propagation occurs along with the heat-affected zones and coarse zones.
- In as-built condition, the HV500 microhardness profile decreases along the build direction (Z-axis) from 130 ± 2 HV500 to 114 ± 4 HV500 and from 130 ± 2 HV500 to 117 ± 3 HV500 for SL-90 and DL-90, respectively, due to the precipitation hardening phenomena induced in the bottom region by the preheated build platform. In the same region, the high-density variation (12.20%) between the CM and the external frame of DL-90 induces a decrease of about 15 HV500, thus nullifying the precipitation hardening effects.
- The direct aging tends to homogenize the mechanical properties between top and bottom top, while at the same time inducing a small increase of ductility (from 6.9 ± 1.0% to 8.3 ± 0.9%). Only after the T6 HT did some samples show the elongation at break of 12–15%; while if the UTS values decreased approximately 294 ± 4 MPa, the yield strength values would remain constant with those obtained after direct aging (≈230 MPa). For these reasons, the strain hardening exponents decrease by approximately 0.24 for as-built and direct aged samples to 0.10 for T6 heat-treated samples.
- The Considère’s criterion shows that the failure occurs after the necking formation only in the samples characterized by a ductility higher than 12%. Moreover, the strain hardening rate was about 1800 MPa and 1600 MPa at the fracture point for the as-built and the direct aged samples, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yap, Y.; Chua, C.; Dong, Z.; Liu, Z.; Zhang, D.; Loh, L.; Sing, S. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Louvis, E.; Fox, P.; Sutcliffe, C. Selective laser melting of aluminium components. J. Mater. Process. Tech. 2011, 211, 275–284. [Google Scholar] [CrossRef]
- Majeed, A.; Lv, J.; Zhang, Y.; Muzamil, M.; Waqas, A. An investigation into the influence of processing parameters on the surface quality of AlSi10Mg parts by SLM process. In Proceedings of the 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 8–12 January 2019. [Google Scholar] [CrossRef]
- Aboulkhair, N.; Everitt, N.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Add. Man. 2014, 1–4, 77–86. [Google Scholar] [CrossRef]
- Santecchia, E.; Spigarelli, S.; Cabibbo, M. Material reuse in laser powder bed fusion: Side effects of the Laser-Metal powder interaction. Metals 2020, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Prashanth, K.; Scudio, S.; Maity, T.; Das, J.; Eckert, J. Is the energy density a reliable parameter for materials synthesis by selective laser melting? Mater. Res. Lett. 2017, 5, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, D.; Schleifenbaum, H.; Heidrick, S.; Meines, W.; Bueltmann, J. High power Selective Laser Melting (HP SLM) of aluminium part. Phys. Proc. 2011, 12, 271–278. [Google Scholar] [CrossRef]
- Larossa, N.O.; Wang, E.; Read, N.; Loretto, M.H.; Evans, C.; Carr, J.; Tradowsky, U.; Attallah, M.M.; Withers, P.J. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy. Theor. Appl. Fract. Mec. 2018, 98, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Weingarten, C.; Buchbinder, D.; Pirch, N.; Meiners, W.; Wissenbach, K.; Poprawe, R. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J. Mat. Process. Technol. 2015, 221, 112–120. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Yadroitsava, I.; Bertrand, P.; Smurov, I. Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp. J. 2012, 18, 201–208. [Google Scholar] [CrossRef]
- Heany, D.; Muller, T.; Davies, P. Mechanical properties of metal injection moulded 316L stainless steel using both prealloy and master alloy techniques. Powder Metall. 2004, 47, 367–373. [Google Scholar] [CrossRef]
- Safiiarov, V.; Popovich, A.; Borisov, E.; Polozov, I.; Masaylo, D.; Orlov, A. The effect of layer thickness at selective laser melting. Procedia Eng. 2017, 174, 126–134. [Google Scholar] [CrossRef]
- Nguyen, Q.B.; Luu, D.N.; Nai, S.M.L.; Zhu, Z.; Chen, Z.; Wei, J. The role of powder layer thickness on the quality of SLM printed parts. Arch. Civ. Mec. Eng. 2018, 18, 948–955. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, H.; Hu, Z.; Zhang, L.; Zeng, X. A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: Defects, microstructure and mechanical properties. Mater. Sci. Eng. A 2019, 746, 416–423. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Zeng, X. Microstructure and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting. Mater. Lett. 2017, 199, 79–83. [Google Scholar] [CrossRef]
- Masoomi, M.; Thomposon, S.; Shamsael, N. Quality part production via multi-laser additive manufcaturing. Manuf. Lett. 2017, 13, 15–20. [Google Scholar] [CrossRef]
- Liu, B.; Li, B.; Li, Z.; Bai, P.; Wang, Y.; Kuai, Z. Numerical investigation on heat transfer of mnulti-laser process during selective laser melting of AlSi10Mg. Results Phys. 2019, 12, 454–459. [Google Scholar] [CrossRef]
- Buchbinder, D. Selective Laser Melting von Aluminiumgusslegierungen; Shaker Verlag: Berlin, Germany, 2013. [Google Scholar]
- Kempen, K.; Thijs, L.; Humbeeck, J.V.; Kruth, J.P. Processing AlSi10Mg by selective laser melting: Parameter optimization and material characterization. Mater. Sci. Technol. 2015, 31, 917–923. [Google Scholar] [CrossRef]
- Zhou, L.; Mehta, A.; Schulz, E.; McWilliams, B.; Cho, K.; Sohn, Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater. Charact. 2018, 143, 5–17. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimization and mechanical properties development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Meng, W.J.; Shao, S.; Phan, N.; Shamsaei, N. Effect of heat treatments on pore morphology and microstructure of laser additively manufactured parts. Mater. Des. Process. Commun. 2019, 1, e29. [Google Scholar] [CrossRef] [Green Version]
- Cerri, E.; Ghio, E.; Bolelli, G. Effect of distance from build platform and the post-heat treatment of AlSi10Mg alloy manufactured by single and multi-laser SLM. J. Mater. Eng. Perform. 2021, 30, 4981–4992. [Google Scholar] [CrossRef]
- Zygula, K.; Nosek, B.; Pasiowiec, H.; Szysiak, N. Mechanical properties and microstructure of AlSi10Mg alloy obtained by casting and SLM technique. World Sci. News 2018, 104, 462–472. [Google Scholar]
- Girelli, L.; Tocci, M.; Gelfi, M.; Pola, A. Study of heat treatment parameters for additively manufactured AlSi10Mg in comparision with corresponding cast alloy. Mater. Sci. Eng. A 2019, 739, 317–328. [Google Scholar] [CrossRef]
- Casati, R.; Nasab, M.; Coduri, M.; Tirelli, V.; Vedani, M. Effect of platform pre-heating and thermal treatments strategy on properties of AlSi10Mg alloy processed by Selective Laser Melting. Metals 2018, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Cerri, E.; Ghio, E. Effect of distance along the build axis on mechanical properties and microstructure in AlSi10Mg SLM alloy. Mater. Sci. Forum. 2021, 1016, 309–314. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Jiang, Y.; Wang, G.W.; Yang, Y.; Zhang, L.C. Gradient in microstructure and mechanical properties of selective laser melted AlSi10Mg. J. Alloy. Compd. 2018, 735, 1414–1421. [Google Scholar] [CrossRef]
- Aboulkhair, N.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N. The microstructure and mechanical properties of selective laser melted AlSi10Mg: The effect of conventional T6-like heat treatment. Mater. Sci. Eng. A 2016, 667, 139–143. [Google Scholar] [CrossRef]
- Li, W.; Li, S.; Liu, J.; Zhang, A.; Zhou, Y.; Wei, Q.; Yan, C.; Shi, Y. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
- Visser, R.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W.; Marioara, C.D.; Andersen, S.J. The crystal structure of the β′ phase in Al-Mg-Si alloys. Acta Mater. 2007, 55, 3815–3823. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Park, T.; Beak, M.; Hyer, H.; Sohn, Y.; Lee, K. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactures by selective laser melting. Mater. Charact. 2021, 176, 111113. [Google Scholar] [CrossRef]
- Ghio, E.; Cerri, E. Aging response in Selective Laser Melted AlSi10Mg alloy as function of distance from the substrate plate. In Materials Science Forum; Trans Tech Publications Ltd: Bäch, Switzerland, 2021; Volume 1016, pp. 476–480. [Google Scholar] [CrossRef]
- Yu, G.; Gu, D.; Dai, D.; Xia, M.; Ma, C.; Chang, K. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl. Phys. A 2016, 891, 122–134. [Google Scholar] [CrossRef]
- Li, Y.; Gu, D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des. 2014, 63, 856–867. [Google Scholar] [CrossRef]
- Pham, M.; Dovgyy, B.; Hooper, P.; Gourlay, C.; Piglione, A. The role of side-branching in microstructure development in laser powder-bed fusion. Nat. Commun. 2020, 11, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jiang, Y.; Zhang, X.; Ching, X. Microstructural evolution and EBSD analysis of AlSi10Mg alloy fabricated by selective laser remelting. Mater. Charact. 2020, 161, 110079. [Google Scholar] [CrossRef]
- Lingda, X.; Guoli, Z.; Gaoyang, M.; Chunming, W.; Ping, J. A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool. J. Alloy Compd. 2021, 858, 157669. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Amirkhiz, B.; Li, J.; Mohammadi, M. Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: Effect of building direction. Add. Man. 2018, 23, 121–131. [Google Scholar] [CrossRef]
- Kim, D.K.; Hwang, J.H.; Kim, E.Y.; Heo, Y.U.; Woo, W.; Choi, S.H. Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM. J. Alloy. Compd. 2017, 714, 687–697. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloy. Materials 2019, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Delahaye, J.; Tchuindjang, J.; Lecomte-Beckers, L.; Rigo, O.; Habraken, A.; Mertens, A. Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting. Acta Mater. 2019, 175, 160–170. [Google Scholar] [CrossRef]
- Paul, M.J.; Liu, Q.; Best, J.P.; Li, X.; Kruzic, J.J.; Ramamurty, U.; Gludovatz, B. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 2021, 211, 116869. [Google Scholar] [CrossRef]
- Qin, H.; Dong, Q.; Fallah, V.; Daymond, M. Rapid solidification and non-equilibrium phase constitution in laser powder bed fusion (LPBF) of AlSi10Mg alloy: Analysis of nano-precipitates, eutectic phases, and hardness evolution. Metall. Mater. Trans. A 2020, 51A, 448–468. [Google Scholar] [CrossRef]
- Chen, B.; Moon, S.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K. Strength and strain hardening of selective laser melted AlSi10Mg alloy. Scripta Mater. 2017, 141, 45–49. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wang, K.; Wang, D.; Han, F. Effect of crystalline grain structures on the mechanical properties of twinning-induced plasticity steel. Acta. Mech. Sin. 2016, 32, 181–187. [Google Scholar] [CrossRef]
- Drar, H.; Svensson, I.L. Improvement of tensile properties of AlSi alloy through directional solidification. Mater. Lett. 2007, 61, 392–396. [Google Scholar] [CrossRef]
- Matyjia, H.; Giessen, B.; Grant, N. The effect of cooling rate on the dendrite spacing in splat-cooled aluminium alloys. J. Inst. Metals. 1968, 96, 30–32. [Google Scholar]
- Liu, B.; Li, B.Q.; Li, Z. Selective laser Melting of an additive layer manufacturing process on AlSi10Mg. Results Phys. 2019, 12, 982–988. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Park, S.; Gottsfritz, G.; Benson, G.; Tolentino, B.; McWilliams, B.; Cho, K.; Sohn, Y. Understanding the laser powder bed fusion of AlSi10Mg alloy. Metallogr. Microstruct. Anal. 2020, 9, 484–502. [Google Scholar] [CrossRef]
- Garmendia, X.; Chalker, J.; Bilton, M.; Sutcliffe, C.J.; Chalker, P.R. Microstructure and mechanical properties of Cu-modified AlSi10Mg fabricated by Laser-powder bed fusion. Materialia 2020, 9, 100590. [Google Scholar] [CrossRef]
- Andani, M.T.; Dehghani, R.; Karamooz-Ravari, M.R.; Mirzaeifar, R.; Ni, J. Spatter formation in selective laser melting process using multi-laser technology. Mater. Des. 2017, 131, 460–469. [Google Scholar] [CrossRef]
- Galy, C.; Le Guen, E.; Lacoste, E.; Arvieu, C. Main defects observed in aluminium alloy parts produced by SLM: From causes to consequences. Add. Man. 2018, 22, 165–175. [Google Scholar] [CrossRef]
- Chen, J.; Hou, W.; Wang, X.; Chu, S.; Yang, Z. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg. Chin. J. Aeronaut. 2020, 33, 2043–2054. [Google Scholar] [CrossRef]
- Yu, W.; Sing, S.; Chua, C.; Yang, Z. Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J. Alloy Compd. 2019, 792, 574–581. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, Y.; Lv, J.; Peng, T.; Atta, Z.; Ahmed, A. Investigation on T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM. Comp. Ind. Eng. 2020, 139, 106194. [Google Scholar] [CrossRef]
- Giovagnoli, M.; Tocci, M.; Merlin, A.F.M.; Ferroni, M.; Migliori, A.; Pola, A. Effect of different heat-treatment routes on the impact properties of an additively manufactured AlSi10Mg alloy. Mater. Sci. Eng. A 2021, 802, 140671. [Google Scholar] [CrossRef]
- Wang, L.F.; Sun, J.; Yu, X.L.; Zhu, X.G.; Cheng, L.Y.; Liang, H.H.; Yan, B.; Guo, L.J. Enhancement in mechanical properties of selectively laser-melted AlSi10Mg aluminum alloys by T6-like heat treatment. Mater. Sci. Eng. A 2018, 734, 299–310. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.; Gou, M.; Zhu, X.; Yan, B. Characterization of structural properties for AlSi10Mg alloys fabricated by selective laser melting. Mater. Sci. Technol. 2017, 33, 2274–2282. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, X.; Zhu, Y.; Ding, Z.; Zhu, X.; Sun, J.; Yan, B. Investigation of performance and residual stress generation of AlSi10Mg processed by Selective Laser Melting. Adv. Mater. Sci. Eng. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tomus, D.; Tian, Y.; Rometsch, P.A.; Heilmaier, M.; Wu, X. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting. Mater. Sci. Eng. A 2016, 667, 42–53. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.; Veldhuis, S. A study of the relationship between thermal expansion and residual stress in selective laser melting of Ti6Al4V. J. Manuf. Process. 2020, 52, 181–192. [Google Scholar] [CrossRef]
- Hadadzedeh, A.; Baxter, C.; Amirkhiz, B.S.; Mohammadi, M. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: Comparison between virgin and recycled powders. Add. Man. 2018, 23, 108–120. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, L.; Zhang, B.; Chen, Y.Z.; Liu, F. Microstructural evolution and strengthening mechanism of an Al-Si-Mg alloy processed by high-pressure torsion with different heat treatments. Mater. Sci. Eng. A 2020, 794, 139932. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Tan, Z.; Xiong, D.; Guo, Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int. J. Plast. 2020, 127, 102640. [Google Scholar] [CrossRef]
- Yang, K.; Rometshc, P.; Davies, C.; Huang, A.; Wu, X. Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting. Mater. Des. 2018, 154, 275–290. [Google Scholar] [CrossRef]
- Sajadi, F.; Tiemnann, J.; Bandari, N.; Darabi, A.; Mola, J.; Schmauder, S. Fatigue improvement of AlSi10Mg fabricated by laser-based powder bed fusion through heat treatment. Metals 2021, 11, 683. [Google Scholar] [CrossRef]
- Baek, M.; Kreethi, R.; Park, T.; Sohn, Y.; Lee, K. Influence of heat treatment on the high-cycle fatigue properties and fatigue damage mechanism of selective laser melted AlSi10Mg alloy. Mater. Sci. Eng. A 2021, 819, 141486. [Google Scholar] [CrossRef]
- Ryen, O.; Nijs, O.; Sjolander, E.; Holmedal, B.; Ekstrom, H.; Nes, E. Strengthening mechanisms in solid solution aluminum alloy. Matall. Mater. Trans. 2006, 37, 1999–2006. [Google Scholar] [CrossRef]
- Starink, M.J.; Wang, S.C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta Mater. 2003, 51, 5131–5150. [Google Scholar] [CrossRef] [Green Version]
- Dieter, G.; Bacon, D. Mechanical Metallurgy: SI Metric Edition; McGRAW-HILL Book Company: New York, NY, USA, 1989. [Google Scholar]
- ASTM Standard E646: Standard Test Method for Tensile Strain-Hardening Exponents (N-Values) Of Metallic Sheet Materials; ADMET: West Conshohocken, PA, USA, 2000.
- Wang, Z.; Xie, M.; Li, Y.; Zhang, W.; Yang, C.; Kollo, L.; Eckert, J.; Prashanth, K. Premature failure of an additively manufactured material. NPG Asia Mater. 2020, 12, 30. [Google Scholar] [CrossRef]
- Sjögren, T.; Svensson, I.L. The effect of graphite fraction and morphology on the plastic deformation behavior of cast irons. Mer. Mater. Trans. 2007, 38A, 840–847. [Google Scholar] [CrossRef]
- Pierre, V.; Anthony, B.; Lore, T.; Brecht, V.; Kim, V. Heat treatment optimization via thermo-physical characterization of AlSi7Mg and AlSi10Mg manufactured by laser powder bed fusion (LPBF). In Proceedings of the EUROPM 2018 Congress, Bilbao, Spain, 14–18 October 2018. [Google Scholar]
- Bharath, C.; Shamanth, V.; Hemanth, K. Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting and A360 alloy by die casting. Mater. Today Proc. 2021, 45, 78–81. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Q.; Bi, Y. Deformation hardening behaviuor of deformed aluminium alloys. Phy. Tesing Chem. Ana. Part A Phys. Test. 2008, 44, 4–6. [Google Scholar] [CrossRef]
- Zhao, L.; Macías, J.G.S.; Ding, L.; Idrissi, H.; Simar, A. Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions. Mater. Sci. Eng. A 2019, 764, 138210. [Google Scholar] [CrossRef]
- Tang, M.; Pistorius, P. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int. J. Fatigue. 2017, 94, 192–201. [Google Scholar] [CrossRef]
- Drouzy, M.; Jacob, S.; Richard, M. Interpretation of tensile results by means of quality index and probable yield strength. AFS Int. Cast Metals Int. 1980, 5, 43–50. [Google Scholar]
- Sigworth, G. Understanding quality in aluminium castings. Inter. Metalcast. 2011, 5, 7–22. [Google Scholar] [CrossRef]
Elements | Al | Si | Fe | Mg | Cu | Mn | Zn | Ti | Pb | Sn |
---|---|---|---|---|---|---|---|---|---|---|
wt.% | Bal. | 10.0 | 0.12 | 0.31 | 0.001 | 0.005 | 0.002 | 0.042 | 0.001 | <0.01 |
Process Parameters | 90-Samples | 50-Samples |
---|---|---|
Layer thickness [μm] | 90 | 50 |
Scan speed [mm/s] | 1400 | 1150 |
Hatch spacing [μm] | 70 | 170 |
Laser power [W] | 370 | 350 |
Energy density [J/mm3] | 42 | 36 |
Temperature of build platform [°C] | 150 | |
Heat treatments | DA: 200 °C/4 h | |
T6: 505 °C/4 h + 175 °C/4 h |
HT | Planes | SL | DL | ||
---|---|---|---|---|---|
Bottom | Top | Bottom | Top | ||
As-built | XZ-90 | 99.62 ± 0.01% | 99.76 ± 0.04% | 99.20 ± 0.05% | 99.33 ± 0.02% |
XZ-900 1 | 97.74 ± 0.09% | 97.72 ± 0.11% | 86.99 ± 0.22% | 95.50 ± 0.09% | |
XZ-50 | 99.00 ± 0.01% | 98.5 ± 0.03% | 99.9 ± 0.01 | 99.2 ± 0.05% | |
200 °C/4 h | XZ-90 | 99.73 ± 0.02% | 99.60 ± 0.01% | - | - |
T6 | XZ-90 | 98.15 ± 0.06% | 97.95 ± 0.01% | 97.58 ± 0.01% | 98.12 ± 0.01% |
HT | Absolute Differences | Relative Change | |||||
---|---|---|---|---|---|---|---|
Δσ0.2 | ΔUTS | Δσ0.2 | ΔUTS | Δσ0.2 | ΔUTS | ||
As-built | SL-90 | 46 MPa | 28 MPa | −0.4% | −16% | −6% | +6% |
DL-90 | 50 MPa | 36 MPa | −0.6% | −18% | −8% | +8% | |
SL-50 [24] | 70 MPa | 80 MPa | −0.8% | −24% | −18% | +12% | |
DL-50 [24] | 110 MPa | 100 MPa | −0.9% | −37% | −22% | +14% | |
200 °C/4 h | SL-90 | 11 MPa | 10 MPa | −0.5% | −5% | −3% | +6% |
SL-50 | 19 MPa | 22 MPa | +0.8% | −8% | −6% | −10% | |
T6 | SL-90 | 3 MPa | 3 MPa | +1.8% | −1% | −1% | +16% |
DL-90 | −11 MPa | −15 MPa | −1.6% | +5% | +5% | +20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghio, E.; Cerri, E. Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing. Materials 2021, 14, 4901. https://doi.org/10.3390/ma14174901
Ghio E, Cerri E. Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing. Materials. 2021; 14(17):4901. https://doi.org/10.3390/ma14174901
Chicago/Turabian StyleGhio, Emanuele, and Emanuela Cerri. 2021. "Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing" Materials 14, no. 17: 4901. https://doi.org/10.3390/ma14174901
APA StyleGhio, E., & Cerri, E. (2021). Work Hardening of Heat-Treated AlSi10Mg Alloy Manufactured by Selective Laser Melting: Effects of Layer Thickness and Hatch Spacing. Materials, 14(17), 4901. https://doi.org/10.3390/ma14174901