Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer
Abstract
:1. Introduction
2. Fibre Factor Theoretical Methods
3. Materials and Testing
3.1. Properties of Raw Materials
3.2. Mix Proportion
3.3. Mixing and Testing Procedure
4. Results and Discussion
4.1. Workabilities
4.2. Mechanical Properties
4.3. Ultrasonic Wave Velocity and Density
4.4. Further Discussion
5. Conclusions
- (1)
- At the same volume fraction, geopolymers with long fibres presented a worse flowability than those having short fibres due to the easier contacting of long fibres.
- (2)
- By the growing of FF, the influence of the fibre addition on the V-funnel flow rate was more significant than the slump spread. This could be ascribed to the consequence of fibre addition and friction by the V-funnel which estimated the restrained deformability.
- (3)
- For an FF lesser than Fc = 100, the influence of fibres was negligible and fibres were far apart from each other and, thus, they could not restrict cracking under a load and transfer the load to improve the mechanical properties.
- (4)
- For an FF between Fc = 100 and Fd = 350, a noteworthy enhancement of mechanical properties was obtained and the geopolymer was still adequately workable to flow by weight of self, without any symbols of instability and fibre clumping. Under this condition, a better fibre dispersal and reinforcing productivity can lead to better hardened properties.
- (5)
- For FF higher than Fd = 350, fibres tended to come to be entwined together and formed clumping resulting from the fibre balling, resulting in worse hardened properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rifaai, Y.; Yahia, A.; Mostafa, A.; Aggoun, S.; Kadri, E.-H. Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Constr. Build. Mater. 2019, 223, 583–594. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Gourley, T.; Duxson, P.; Setunge, S.; Lloyd, N.; Dechsler, M.; South, W. Concrete Institute of Australia. Recommended Practice: Geopolymer Concrete; Concrete Institute of Australia: Sydney, Australia, 2011. [Google Scholar]
- Li, C.; Zhang, T.; Wang, L. Mechanical properties and microstructure of alkali activated Pisha sandstone geopolymer composites. Constr. Build. Mater. 2014, 68, 233–239. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers—A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Li, L.; Li, Z.; Cao, M.; Tang, Y.; Zhang, Z. Nanoindentation and Porosity Fractal Dimension of Calcium Carbonate Whisker Reinforced Cement Paste after Elevated Temperatures (up to 900 °C). Fractals 2021, 29, 2140001. [Google Scholar] [CrossRef]
- Li, L.; Khan, M.; Bai, C.; Shi, K. Uniaxial Tensile Behavior, Flexural Properties, Empirical Calculation and Microstructure of Multi-Scale Fiber Reinforced Cement-Based Material at Elevated Temperature. Materials 2021, 14, 1827. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, D.; Li, Z.; Cao, M.; Gao, J.; Zhang, Z. Effect of high temperature on morphologies of fibers and mechanical properties of multi-scale fiber reinforced cement-based composites. Constr. Build. Mater. 2020, 261, 120487. [Google Scholar] [CrossRef]
- Li, L.; Cao, M.; Xie, C.; Yin, H. Effects of CaCO3 whisker, hybrid fiber content and size on uniaxial compressive behavior of cementitious composites. Struct. Concr. 2019, 20, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Rossi, P.; Parant, E. Damage mechanisms analysis of a multi-scale fibre reinforced cement-based composite subjected to impact and fatigue loading conditions. Cem. Concr. Res. 2008, 38, 413–421. [Google Scholar] [CrossRef]
- Parant, E.; Pierre, R.; Le Maou, F. Durability of a multiscale fibre reinforced cement composite in aggressive environment under service load. Cem. Concr. Res. 2007, 37, 1106–1114. [Google Scholar] [CrossRef]
- Li, L.; Xie, C.; Cao, M.; Zhou, X.; Li, Z. Synergistic Effect between CaCO3 Whisker and Steel-PVA Fibre Cocktail in Cement-based Material at Elevated Temperature. J. Mater. Civ. Eng. 2021, in press. [Google Scholar] [CrossRef]
- Arora, A.; Yao, Y.; Mobasher, B.; Neithalath, N. Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC). Cem. Concr. Compos. 2019, 98, 1–13. [Google Scholar] [CrossRef]
- Liu, J.; Wu, C.; Liu, Z.; Li, J.; Xu, S.; Liu, K.; Su, Y.; Chen, G. Investigations on the Response of Ceramic Ball Aggregated and Steel Fibre Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-UHPC) to Projectile Penetration. Compos. Struct. 2021, 255, 112983. [Google Scholar] [CrossRef]
- Gomes, R.F.; Dias, D.P.; Silva, F.D.A. Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete. Theor. Appl. Fract. Mech. 2020, 107, 102568. [Google Scholar] [CrossRef]
- Kumar, R.; Suman, S.K.; Sharma, M. Laboratory investigation on the synthesis and mechanical characterization of fiber reinforced geopolymer concrete. Mater. Today Proc. 2020, 32, 268–273. [Google Scholar] [CrossRef]
- Noushini, A.; Hastings, M.; Castel, A.; Aslani, F. Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Constr. Build. Mater. 2018, 186, 454–475. [Google Scholar] [CrossRef]
- Carabba, L.; Santandrea, M.; Carloni, C.; Manzi, S.; Bignozzi, M.C. Steel fiber reinforced geopolymer matrix (S-FRGM) composites applied to reinforced concrete structures for strengthening applications: A preliminary study. Compos. Part B Eng. 2017, 128, 83–90. [Google Scholar] [CrossRef]
- Kuder, K.G.; Ozyurt, N.; Mu, E.B.; Shah, S.P.; Zihnioglu, N.O. Rheology of fiber-reinforced cementitious materials. Cem. Concr. Res. 2007, 37, 191–199. [Google Scholar] [CrossRef]
- Ou, Y.-C.; Tsai, M.-S.; Liu, K.-Y.; Chang, K.-C. Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. J. Mater. Civ. Eng. 2012, 24, 207–215. [Google Scholar] [CrossRef]
- Silva, E.; Coelho, J.; Bordado, J. Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology. Constr. Build. Mater. 2013, 40, 473–480. [Google Scholar] [CrossRef]
- Said, S.; Razak, H.A. The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Mater. Des. 2015, 86, 447–457. [Google Scholar] [CrossRef]
- Pyo, S.; El-Tawil, S.; Naaman, A.E. Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cem. Concr. Res. 2016, 88, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, S.; Walraven, J.C. Parameter-study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cem. Concr. Res. 2001, 31, 1793–1798. [Google Scholar] [CrossRef]
- Bayasi, M.Z.; Soroushian, P. Effect of steel fiber reinforcement on fresh mix properties of concrete. ACI Mater. J. 1992, 89, 369–374. [Google Scholar]
- Krieger, I.M.; Dougherty, T.J. A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Emdadi, A.; Mehdipour, I.; Libre, N.A.; Shekarchizadeh, M. Optimized workability and mechanical properties of FRCM by using fiber factor approach: Theoretical and experimental study. Mater. Struct. 2013, 48, 1149–1161. [Google Scholar] [CrossRef]
- Mehdipour, I.; Vahdani, M.; Libre, N.A.; Shekarchizadeh, M. Relationship between workability and mechanical properties of fibre-reinforced self-consolidating mortar. Mag. Concr. Res. 2013, 65, 1011–1022. [Google Scholar] [CrossRef]
- Mehdipour, I.; Libre, N.A.; Shekarchizadeh, M.; Khanjani, M. Effect of workability characteristics on the hardened performance of FRSCCMs. Constr. Build. Mater. 2013, 40, 611–621. [Google Scholar] [CrossRef]
- Martinie, L.; Rossi, P.; Roussel, N. Rheology of fiber reinforced cementitious materials: Classification and prediction. Cem. Concr. Res. 2010, 40, 226–234. [Google Scholar] [CrossRef]
- Cao, M.; Li, L.; Shen, S. Influence of Reinforcing Index on Rheology of Fiber-Reinforced Mortar. ACI Mater. J. 2019, 116, 95–105. [Google Scholar] [CrossRef]
- Cao, M.; Si, W.; Xie, C. Relationship of Rheology, Fiber Dispersion, and Strengths of Polyvinyl Alcohol Fiber-Reinforced Cementitious Composites. ACI Mater. J. 2020, 117, 191–204. [Google Scholar]
- Si, W.; Cao, M.; Li, L. Establishment of fiber factor for rheological and mechanical performance of polyvinyl alcohol (PVA) fiber reinforced mortar. Build. Mater. 2020, 265, 120347. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Zhang, Z.; Li, N.; Shi, D. Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cem. Concr. Compos. 2020, 112, 103665. [Google Scholar] [CrossRef]
- Ambily, P.S.; Ravisankar, K.; Umarani, C.; Dattatreya, J.K.; Iyer, N.R. Development of ultra-high-performance geopolymer concrete. Mag. Concr. Res. 2014, 66, 82–89. [Google Scholar] [CrossRef]
- Philipse, A.P. The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir 1996, 12, 1127–1133. [Google Scholar] [CrossRef]
- Cao, M.; Li, L.; Xu, L. Relations between rheological and mechanical properties of fiber reinforced mortar. Comput. Concr. 2017, 20, 449–459. [Google Scholar]
- Cao, M.; Ming, X.; Yin, H.; Li, L. Influence of high temperature on strength, ultrasonic velocity and mass loss of calcium carbonate whisker reinforced cement paste. Compos. Part B Eng. 2019, 163, 438–446. [Google Scholar] [CrossRef]
- Cao, M.; Li, L. New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites. Constr. Build. Mater. 2018, 176, 618–628. [Google Scholar] [CrossRef]
- Li, L.; Cao, M. Influence of calcium carbonate whisker and polyvinyl alcohol- steel hybrid fiber on ultrasonic velocity and resonant frequency of cementitious composites. Constr. Build. Mater. 2018, 188, 737–746. [Google Scholar] [CrossRef]
- Kutanaei, S.S.; Choobbasti, A.J. Effects of Nanosilica Particles and Randomly Distributed Fibers on the Ultrasonic Pulse Velocity and Mechanical Properties of Cemented Sand. J. Mater. Civ. Eng. 2017, 29, 04016230. [Google Scholar] [CrossRef]
- Tsioulou, O.; Lampropoulos, A.; Paschalis, S. Combined Non-Destructive Testing (NDT) method for the evaluation of the mechanical characteristics of Ultra High Performance Fibre Reinforced Concrete (UHPFRC). Constr. Build. Mater. 2017, 131, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Tanyildizi, H.; Şahin, M. Taguchi optimization approach for the polypropylene fiber reinforced concrete strengthening with polymer after high temperature. Struct. Multidiscip. Optim. 2016, 55, 529–534. [Google Scholar] [CrossRef]
- Yap, S.P.; Alengaram, U.J.; Jumaat, M.Z. Enhancement of mechanical properties in polypropylene– and nylon–fibre reinforced oil palm shell concrete. Mater. Des. 2013, 49, 1034–1041. [Google Scholar] [CrossRef]
- Yim, H.J.; Kim, J.H.; Park, S.-J.; Kwak, H.-G. Characterization of thermally damaged concrete using a nonlinear ultrasonic method. Cem. Concr. Res. 2012, 42, 1438–1446. [Google Scholar] [CrossRef]
Composition | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | SO3 | Na2O |
---|---|---|---|---|---|---|---|---|
Fly ash | 9.80 | 51.49 | 24.36 | 5.49 | 1.20 | 1.04 | 2.14 | 0.51 |
Slag | 33.10 | 27.91 | 15.57 | 0.36 | 0.30 | 0.44 | 1.10 | 0.49 |
Silica fume | 0.81 | 93.47 | 0.16 | 0.10 | 0.95 | 2.89 | 0.84 | 0.23 |
Length(mm) | Density (g/cm3) | Tensile Strength (MPa) | Diameter (μm) | Elastic Modulus (GPa) | Aspect Ratio (L/d) |
---|---|---|---|---|---|
6 | 0.91 | 530 | 31 | 5.0 | 193.55 |
12 | 0.91 | 530 | 31 | 5.0 | 387.09 |
Group | w/b | Aspect Ratio (L/d) | Volume Fraction (ϕ, %) | Fibre Factor (FF = L/d × ϕ) |
---|---|---|---|---|
LG | 0.35 | - | 0.0 | - |
LSG1 | 0.35 | 193.55 | 0.3 | 58.06 |
LSG2 | 0.35 | 193.55 | 0.6 | 116.13 |
LSG3 | 0.35 | 193.55 | 0.9 | 174.19 |
LSG4 | 0.35 | 193.55 | 1.2 | 232.26 |
LSG5 | 0.35 | 193.55 | 1.5 | 290.32 |
LSG6 | 0.35 | 193.55 | 1.8 | 348.39 |
LLG1 | 0.35 | 387.09 | 0.3 | 116.13 |
LLG2 | 0.35 | 387.09 | 0.6 | 232.26 |
LLG3 | 0.35 | 387.09 | 0.9 | 348.39 |
LLG4 | 0.35 | 387.09 | 1.2 | 464.52 |
LLG5 | 0.35 | 387.09 | 1.5 | 580.65 |
LLG6 | 0.35 | 387.09 | 1.8 | 696.77 |
HG | 0.38 | - | 0.0 | - |
HSG1 | 0.38 | 193.55 | 0.3 | 58.06 |
HSG2 | 0.38 | 193.55 | 0.6 | 116.13 |
HSG3 | 0.38 | 193.55 | 0.9 | 174.19 |
HSG4 | 0.38 | 193.55 | 1.2 | 232.26 |
HSG5 | 0.38 | 193.55 | 1.5 | 290.32 |
HSG6 | 0.38 | 193.55 | 1.8 | 348.39 |
HLG1 | 0.38 | 387.09 | 0.3 | 116.13 |
HLG2 | 0.38 | 387.09 | 0.6 | 232.26 |
HLG3 | 0.38 | 387.09 | 0.9 | 348.39 |
HLG4 | 0.38 | 387.09 | 1.2 | 464.52 |
HLG5 | 0.38 | 387.09 | 1.5 | 580.65 |
HLG6 | 0.38 | 387.09 | 1.8 | 696.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, B.-c.; Liu, B.; Li, L.; Pang, W.; Wan, Z. Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer. Materials 2021, 14, 5025. https://doi.org/10.3390/ma14175025
Pu B-c, Liu B, Li L, Pang W, Wan Z. Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer. Materials. 2021; 14(17):5025. https://doi.org/10.3390/ma14175025
Chicago/Turabian StylePu, Bei-chen, Bin Liu, Li Li, Wei Pang, and Zhangrun Wan. 2021. "Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer" Materials 14, no. 17: 5025. https://doi.org/10.3390/ma14175025
APA StylePu, B. -c., Liu, B., Li, L., Pang, W., & Wan, Z. (2021). Influence of Polypropylene Fibre Factor on Flowability and Mechanical Properties of Self-Compacting Geopolymer. Materials, 14(17), 5025. https://doi.org/10.3390/ma14175025