Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Preparation of the sample: samples are cut out, grinded with sandpaper, and cleaned (usually with acetone);
- Weighing of samples: metal samples are weighed before being put into the test tubes filled with the PCM;
- Immersion of samples in the PCM: metal samples are placed into tubes filled with the PCM (at a temperature when the PCM is a liquid) and they are completely immersed in the PCM, after which they are kept at a constant temperature (when the PCM is a liquid) [7,8,9,10,11] or are tested in temperature cycles triggering phase transformation processes [3,4,5,6,13,17];
- Removal of samples from the PCM: metal samples are removed from the PCM after a specified time (e.g., a week, a month, or several months);
- Sample cleaning-up: metal samples are cleaned and dried after being removed from the PCM;
- Reweighing of samples: metal samples are weighed and subjected to visual evaluation;
- Corrosion rate calculation: based on the measurement results, the mass change of the sample and the corrosion rate (CR) are determined.
2.3. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | area |
CR | corrosion rate |
D | density |
Δm | the weight loss |
K | constant |
m | mass |
t | time |
W | mass loss |
References
- Boquera, L.; Castro, J.R.; Pisello, A.L.; Cabeza, L.F. Research progress and trends on the use of concrete as thermal energy storage material through bibliometric analysis. J. Energy Storage 2021, 38, 102562. [Google Scholar] [CrossRef]
- Nazari Sam, M.; Caggiano, A.; Mankel, C.; Koenders, E. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures. Materials 2020, 13, 1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lázaro, A.; Zalba, B.; Bobi, M.; Castellón, C.; Cabeza, L.F. Experimental study on phase change materials and plastics compatibility. AIChE J. 2006, 52, 804–808. [Google Scholar] [CrossRef]
- Kahwaji, S.; Johnson, M.; Kheirabadi, A.; Groulx, D.; White, M. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol. Energy Mater. Sol. Cells 2017, 167, 109–120. [Google Scholar] [CrossRef]
- Castellón, C.; Martorell, I.; Cabeza, L.F.; Fernández, A.I.; Manich, A.M. Compatibility of plastic with phase change materials (PCM). Int. J. Energy Res. 2011, 35, 765–771. [Google Scholar] [CrossRef]
- Bantová, S.; Ostrý, M.; Struhala, K. Interaction between Organic and Inorganic PCMs and Selected Metals. Preprints 2019, 2019110015. [Google Scholar] [CrossRef]
- Browne, M.C.; Boyd, E.; McCormack, S.J. Investigation of the corrosive properties of phase change materials in contact with metals and plastic. Renew. Energy 2017, 108, 555–568. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Illa, J.; Roca, J.; Badia, F.; Mehling, H.; Hiebler, S.; Ziegler, F. Middle term immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range. Mater. Corros. 2001, 52, 748–754. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Roca, J.; Nogueés, M.; Mehling, H.; Hiebler, S. Long term immersion corrosion tests on metal-PCM pairs used for latent heat storage in the 24 to 29 °C temperature range. Mater. Corros. 2005, 56, 33–39. [Google Scholar] [CrossRef]
- Ferrer, G.; Solé, A.; Barreneche, C.; Martorell, I.; Cabeza, L. Corrosion of metal containers for use in PCM energy storage. In Proceedings of the EuroSun 2014 Conference Proceedings: International Solar Energy Society (ISES), Aix-les-Bains, France, 16–19 September 2014. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, G.; Solé, A.; Barreneche, C.; Martorell, I.; Cabeza, L. Corrosion of metal containers for use in PCM energy storage. Renew. Energy 2015, 76, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Moreno, P.; Miró, L.; Solé, A.; Barreneche, C.; Solé, C.; Martorell, I.; Cabeza, L.F. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications. Appl. Energy 2014, 125, 238–245. [Google Scholar] [CrossRef]
- Farrell, A.J.; Norton, B.; Kennedy, D.M. Corrosive effects of salt hydrate phase change materials used with aluminum and copper. J. Mater. Process. Technol. 2006, 175, 198–205. [Google Scholar] [CrossRef]
- Revie, R.W. Uhlig’s Corrosion Handbook, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 9780470080320. [Google Scholar]
- Revie, R.W.; Uhlig, H.H. Corrosion and Corrosion Control. An Introduction to Corrosion Science and Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2008; ISBN 9780471732792. [Google Scholar]
- Mohamed, S.A.; Al-Sulaiman, F.A.; Ibrahim, N.I.; Zahir, M.H.; Al-Ahmed, A.; Saidur, R.; Yılbaş, B.S.; Sahin, A.Z. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 1072–1089. [Google Scholar] [CrossRef]
- Ostrý, M.; Bantová, S.; Struhala, K. Compatibility of Phase Change Materials and Metals: Experimental Evaluation Based on the Corrosion Rate. Molecules 2020, 25, 2823. [Google Scholar] [CrossRef]
- Marín, P.E.; Ushak, S.; de Gracia, A.; Grageda, M.; Cabeza, L.F. Assessing corrosive behaviour of commercial phase change materials in the 21–25 °C temperature range. J. Energy Storage 2020, 32, 101711. [Google Scholar] [CrossRef]
- Devanuri, J.K.; Gaddala, U.M.; Kumar, V. Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage. Mater. Renew. Sustain. Energy 2020, 9, 24. [Google Scholar] [CrossRef]
- Karwacki, J. Cooling System with PCM Storage for an Office Building: Experimental Investigation Aided by a Model of the Office Thermal Dynamics. Materials 2021, 14, 1356. [Google Scholar] [CrossRef]
- Osterman, E.; Hagel, K.; Rathgeber, C.; Butala, V.; Stritih, U. Parametrical analysis of latent heat and cold storage for heating and cooling of rooms. Appl. Therm. Eng. 2015, 84. [Google Scholar] [CrossRef]
- Paroutoglou, E.; Afshari, A.; Bergsøe, N.; Fojan, P.; Hultmark, G. A PCM based cooling system for office buildings: A state of the art review. E3S Web Conf. 2019, 111, 01026. [Google Scholar] [CrossRef] [Green Version]
- Rolka, P.; Przybylinski, T.; Kwidzinski, R.; Lackowski, M. The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems. Renew. Energy 2021, 172, 541–550. [Google Scholar] [CrossRef]
- Kapica, P.; Karwacki, J.; Bykuć, S. The use of the T-history method to estimate thermal capacity and latent heat for RT15 and RT18 materials. E3S Web Conf. 2018, 70. [Google Scholar] [CrossRef]
- Manufacturer’s Technical Data RT15 Rubitherm. Available online: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT15_EN_09102020.PDF (accessed on 8 September 2021).
- Manufacturer’s Technical Data RT18 HC Rubitherm. Available online: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT18HC_EN_09102020.PDF (accessed on 8 September 2021).
- Manufacturer’s Technical Data RT22 HC Rubitherm. Available online: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT22HC_EN_09102020.PDF (accessed on 8 September 2021).
- Sastri, V.S.; Ghali, E.; Elboujdaini, M. Corrosion, Prevention and Protection. Practical Solutions; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- ASTM International. ASTM Standards, ASTM G1 Standards: ASTM Designation: G 1–90 (Reapproved 1999)€1. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens1; ASTM International: West Conshohocken, PA, USA, 1999. [Google Scholar]
- Technical Data of Radwag PS 8000/C/1 Scales (in Polish). Available online: https://radwag.com/pdf/instrukcje/pl/PS-User-Manual-PL.pdf (accessed on 8 September 2021).
- Selvamani, S.T. Microstructure and stress corrosion behaviour of CMT welded AA6061 T-6 aluminium alloy joints. J. Mater. Res. Technol. 2021, 15, 315–326. [Google Scholar] [CrossRef]
PCM | Type of PCM | Recommendation | Ref. | ||||||||||
Carbon Steel | Stainless Steel | Mild Steel | Steel | Aluminum | Copper | Copper and Aluminum | Brass | Plastic/ Perspex | Nylon | ||||
Linpar 17 | Organic | R | NI | NI | NI | R | R | NI | R | NI | NI | [6,17] | |
Linpar 1820 | Organic | R | NI | NI | NI | R | R | NI | R | NI | NI | [6,17] | |
SP21 (Rubitherm) | Inorganic | CR | R | NI | NI | NR 1 | R | NI | NI | NI | NI | [10,11] | |
SP22 (Rubitherm) | Inorganic | CR 1 | R | R 1 | NI | NR 1 | R 1 | NI | R | NI | R | [6,7,17] | |
SP25 (Rubitherm) | Inorganic | CR 1 | NI | NI | NI | R | R 1 | NI | R 1 | NI | NI | [6,17] | |
PureTemp 23 (PureTemp) | Organic | R | NI | R | NI | R | R | NI | NI | NI | NI | [10,11] | |
Caprylic acid and palmitic acid | Organic | R | R | NI | NI | R | CR 1 | NI | NI | NI | NI | [10,11] | |
Caprylic acid and myristic acid | Organic | R | R | NI | NI | R | NR 1 | NI | NI | NI | NI | [10,11] | |
Caprylic acid | Organic | NI | R | CR 1 | NI | CR 1 | CR 1 | NI | CR 1 | R | NI | [7] | |
Palmitic acid | Organic | NI | R | CR 1 | NI | CR 1 | CR 1/NR | NI | CR 1 | R | NI | [7,19] | |
Lauric acid | Organic | NI | R | CR 1 | NI | CR 1 | CR 1 | NI | CR 1 | R | NI | [7,19] | |
Myristic acid | Organic | NI | R | NI | NI | NR 1 | CR 1 | NI | NI | NI | NI | [19] | |
Stearic acid | Organic | NI | R | NI | NI | CR 1 | NR 1 | NI | NI | NI | NI | [19] | |
Micronal (BASF) | Organic | NI | R | CR 1 | NI | R | R | NI | R | R | NI | [7] | |
Zn(NO3)2∙6H2O | Inorganic | NI | R | NI | NR 1 | NR 1 | NR 1 | NI | NR | NI | NI | [8] | |
Na2HPO4·12H2O | Inorganic | NI | R | NI | CR 1 | NR | CR 1 | NI | R | NI | NI | [8] | |
CaCl2·6H2O | Inorganic | NI | R | NI | CR 1 | CR 1 | R 1 | NI | R | NI | NI | [8] | |
TH29 (TEAP) | Inorganic | NI | CR 1 | NI | NR 1 | NR 1 | R | NI | R | NI | NI | [9] | |
mix TH29 and MgCl2·6H2O | Inorganic | NI | CR 1 | NI | NR 1 | NR1 | R | NI | R | NI | NI | [9] | |
C10 | Organic | NI | R | NI | NI | R | NR 1 | NI | NI | NI | CR 1 | [4] | |
C12 | Organic | NI | R | NI | NI | R | CR 1 | NI | NI | NI | CR 1 | [4] | |
C14 | Organic | NI | R | NI | NI | R | CR 1 | NI | NI | NI | CR 1 | [4] | |
C16 | Organic | NI | R | NI | NI | R | CR 1 | NI | NI | NI | CR 1 | [4] | |
C18 | Organic | NI | R | NI | NI | R | NR 1 | NI | NI | NI | CR 1 | [4] | |
Octadecanol | Organic | NI | R | NI | NI | R | R | NI | NI | NI | CR1 | [4] | |
PlusICE E17 (PCM Products) | Inorganic | NI | NI | NI | NI | NR 1 | R | NR1 | NI | NI | NI | [13] | |
ClimSel C18 (ClimSel) | Inorganic | NI | NI | NI | NI | NR 1 | R | NR1 | NI | NI | NI | [13] | |
RT21 (Rubitherm) | Organic | NI | R | NI | NI | R | R | NI | NI | NI | NI | [18] | |
RT25 (Rubitherm) | Organic | NI | R | NI | NI | R | R | NI | NI | NI | NI | [18] | |
SP21E (Rubitherm) | Inorganic | NI | R | NI | NI | NR 1 | CR 1 | NI | NI | NI | NI | [18] | |
HS-24P (Rgees) | Inorganic | NI | R | NI | NI | NR 1 | CR 1 | NI | NI | NI | NI | [18] | |
Paraffin wax | Organic | NI | R | NI | NI | R | R | NI | NI | NI | NI | [19] | |
Sodium acetate trihydrate | Organic | NI | R | NI | NI | R | R | NI | NI | NI | NI | [19] | |
PCM | Type of PCM | Recommendation | Ref. | ||||||||||
Alloy of Magnesium (AZ91D) | Alloy of Nickel and Silver (C7521) | HDPE | LDPE | PET | PP | Acrylic | Poly- carbonate | PCV | Silicone Rubber | ABS | |||
C10 | Organic | NR 1 | NR 1 | NI | NI | NI | NR 1 | NR 1 | R | NR 1 | NR 1 | NR 1 | [4] |
C12 | Organic | CR 1 | NR 1 | NI | NI | NI | NR 1 | NR 1 | R | CR 1 | NR 1 | NR 1 | [4] |
C14 | Organic | CR 1 | NR 1 | NI | NI | NI | NR 1 | NR 1 | R | CR 1 | NR 1 | NR 1 | [4] |
C16 | Organic | R | NR 1 | NI | NI | NI | NR 1 | CR 1 | R | CR1 | NR 1 | NR 1 | [4] |
C18 | Organic | NR 1 | NR 1 | NI | NI | NI | NR 1 | CR 1 | R | R | NR 1 | CR 1 | [4] |
Octadecanol | Organic | R | R | NI | NI | NI | NR 1 | CR 1 | R | R | NR 1 | CR 1 | [4] |
TH24 (Teap) | Inorganic | NI | NI | R | NR | R | NI | NI | NI | NI | NI | NI | [3] |
DC24 (Cosella Dörken) | Inorganic | NI | NI | R | NR | NI | NI | NI | NI | NI | NI | NI | [5] |
RT20 (Rubitherm) | Organic | NI | NI | NI | NR | R | CR | NI | NI | NI | NI | NI | [3,5] |
RT25 (Rubitherm) | Organic | NI | NI | NI | NR | R | CR | NI | NI | NI | NI | NI | [3,5] |
RT26 (Rubitherm) | Organic | NI | NI | NI | NR | R | CR | NI | NI | NI | NI | NI | [3,5] |
RT27 (Rubitherm) | Organic | NI | NI | NI | NR | R | CR | NI | NI | NI | NI | NI | [3,5] |
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Sample material | Cu | Cu | Cu | Al | Al | Al | Cu-Al | Cu-Al | Cu-Al |
PCM | RT15 | RT18 HC | RT22 HC | RT15 | RT18 HC | RT22 HC | RT15 | RT18 HC | RT22 HC |
PCM melting temp [°C] | 10–17 | 17–19 | 20–23 | 10–17 | 17–19 | 20–23 | 10–17 | 17–19 | 20–23 |
PCM congealing temp [°C] | 17–10 | 19–17 | 23–20 | 17–10 | 19–17 | 23–20 | 17–10 | 19–17 | 23–20 |
Heat storage capacity [kJ/kg] | 155 | 260 | 190 | 155 | 260 | 190 | 155 | 260 | 190 |
Reference | [25] | [26] | [27] | [25] | [26] | [27] | [25] | [26] | [27] |
Sample Number | Mass of Metal Sample [g] | ||||
---|---|---|---|---|---|
Before Experiment | After 1 Week | After 3 Weeks | After 4 Weeks | After 7 Weeks | |
1 | 3.67 ± 0.03 | 3.67 ± 0.03 | 3.67 ± 0.03 | 3.66 ± 0.03 | 3.66 ± 0.03 |
2 | 3.72 ± 0.03 | 3.72 ± 0.03 | 3.72 ± 0.03 | 3.70 ± 0.03 | 3.72 ± 0.03 |
3 | 3.35 ± 0.03 | 3.35 ± 0.03 | 3.35 ± 0.03 | 3.32 ± 0.03 | 3.35 ± 0.03 |
4 | 0.72 ± 0.03 | 0.71 ± 0.03 | 0.71 ± 0.03 | 0.70 ± 0.03 | 0.71 ± 0.03 |
5 | 0.65 ± 0.03 | 0.65 ± 0.03 | 0.65 ± 0.03 | 0.65 ± 0.03 | 0.65 ± 0.03 |
6 | 0.57 ± 0.03 | 0.58 ± 0.03 | 0.59 ± 0.03 | 0.58 ± 0.03 | 0.61 ± 0.03 |
7 | 7.58 ± 0.03 | 7.64 ± 0.03 | 7.73 ± 0.03 | 7.68 ± 0.03 | 7.75 ± 0.03 |
8 | 7.97 ± 0.03 | 8.00 ± 0.03 | 8.09 ± 0.03 | 8.10 ± 0.03 | 8.07 ± 0.03 |
9 | 7.43 ± 0.03 | 7.46 ± 0.03 | 7.55 ± 0.03 | 7.58 ± 0.03 | 7.55 ± 0.03 |
Sample Number | CR [mg/cm2year] | |||
---|---|---|---|---|
After 1 Week | After 3 Weeks | After 4 Weeks | After 7 Weeks | |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 |
7 | −763 | −636 | −318 | −309 |
8 | −382 | −509 | −413 | −182 |
9 | −382 | −509 | −477 | −218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolka, P.; Karwacki, J.; Jaworski, M. Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers. Materials 2021, 14, 5172. https://doi.org/10.3390/ma14185172
Rolka P, Karwacki J, Jaworski M. Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers. Materials. 2021; 14(18):5172. https://doi.org/10.3390/ma14185172
Chicago/Turabian StyleRolka, Paulina, Jaroslaw Karwacki, and Maciej Jaworski. 2021. "Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers" Materials 14, no. 18: 5172. https://doi.org/10.3390/ma14185172
APA StyleRolka, P., Karwacki, J., & Jaworski, M. (2021). Compatibility Tests between Three Commercially Available Organic PCMs and Metals Typically Used in Fin-and-Tube Heat Exchangers. Materials, 14(18), 5172. https://doi.org/10.3390/ma14185172