On the Tribological and Oxidation Study of Xanthophylls as Natural Additives in Castor Oil for Green Lubrication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bio-Lubricants
2.2. Chemical Characterization of Additives
2.3. Physical Characterization of Bio-Lubricants
2.4. Lubricating Regime Estimation
2.5. Tribological Performance Evaluation
2.6. Oxidation Performance Evaluation
3. Results
3.1. Chemical Characterization of Additives
3.2. Physical Characterization of Bio-Lubricants
3.3. Lubricating Regime Estimation
3.4. Tribological Performance Evaluation
3.5. Oxidation Performance Evaluation
4. Discussion
5. Conclusions
- The viscosity index of castor oil was increased with the incorporation of all xanthophylls. An improvement up to 30% was reached with astaxanthin in CO compared with the neat oil.
- The lubricant film thickness of bio-lubricants decreased to nearly 30% in comparison to the neat oil, inducing an increase in friction up to 25%. The highest friction coefficient (µk = 0.119) was obtained with the zeaxanthin additive.
- The wear protection capacity of castor oil was enhanced with the addition of all xanthophylls. The wear rate (K) was decreased up to 42% with the bio-lubricant added with astaxanthin in comparison with that of the neat castor oil.
- The oxidation behavior of castor oil was notably enriched using xanthophylls as additives. The best antioxidant capacity was observed in the astaxanthin additive.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, S.-C.; Lu, F.-I. Biopolymer Green Lubricant for Sustainable Manufacturing. Materials 2016, 9, 338. [Google Scholar] [CrossRef]
- Sen, B.; Gupta, M.K.; Mia, M.; Pimenov, D.Y.; Mikołajczyk, T. Performance Assessment of Minimum Quantity Castor-Palm Oil Mixtures in Hard-Milling Operation. Materials 2021, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.-C. Tribological Performance of Green Lubricant Enhanced by Sulfidation IF-MoS2. Materials 2016, 9, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owuna, F. Stability of vegetable based oils used in the formulation of ecofriendly lubricants—A review. J. Egypt. J. Pet. 2020, 29, 251–256. [Google Scholar] [CrossRef]
- Aluyor, E.O.; Ori-Jesu, M. The use of antioxidants in vegetable oils: A review. Afr. J. Biotechnol. 2008, 7, 4836–4842. [Google Scholar] [CrossRef]
- Habereder, T.; Moore, D.; Lang, M. Eco Requirements for Lubricant Additives. In Lubricant Additives, Chemistry and Applications; Rudnick, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 647–666. [Google Scholar]
- Pirro, D.M.; Webster, M.; Daschner, E. Lubrication Fundamentals, 3rd ed.; Taylor & Francis Group: New York, NY, USA, 2016; pp. 35–67. [Google Scholar] [CrossRef]
- Luna, F.M.T.; Salmin, D.C.; Santiago, V.S.; Maia, F.J.N.; Silva, F.O.N.; Mazzetto, S.E.; Cavalcante, C.L. Oxidative Stability of Acylated and Hydrogenated Ricinoleates Using Synthetic and Natural Antioxidants. J. Chem. 2019, 2019, 3973657. [Google Scholar] [CrossRef]
- Hernández-Sierra, M.T.; Bravo-Sánchez, M.G.; Báez, J.E.; Aguilera-Camacho, L.D.; García-Miranda, J.S.; Moreno, K.J. Improvement Effect of Green Lubricants on the Tribological and Mechanical Performance of 4140 Steel. Appl. Sci. 2019, 9, 4896. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Sierra, M.T.; Aguilera-Camacho, L.D.; Báez-García, J.E.; García-Miranda, J.S.; Moreno, K.J. Thermal Stability and Lubrication Properties of Biodegradable Castor Oil on AISI 4140 Steel. Metals 2018, 8, 428. [Google Scholar] [CrossRef] [Green Version]
- Quinchia, L.A.; Delgado, M.A.; Valencia, C.; Franco, J.M.; Gallegos, C. Natural and Synthetic Antioxidant Additives for Improving the Performance of New Biolubricant Formulations. J. Agric. Food Chem. 2011, 59, 12917–12924. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.S.; Iruthayarajan, M.W.; Bakrutheen, M.; Kannan, S.G. Effect of antioxidants on critical properties of natural esters for liquid insulations. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2068–2078. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, Z.; Lu, L.; Zhang, Z.; Tang, Y. Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles. Tribol. Int. 2018, 124, 10–22. [Google Scholar] [CrossRef]
- Singh, Y.; Chaudhary, V.; Pal, V. Friction and wear characteristics of the castor oil with TiO2 as an additives. Mater. Today Proc. 2020, 26, 2972–2976. [Google Scholar] [CrossRef]
- Karthikeyan, K.M.B.; Vijayanand, J.; Arun, K.; Rao, V.S. Thermophysical and wear properties of eco-friendly nano lubricants. Mater. Today Proc. 2021, 39, 285–291. [Google Scholar] [CrossRef]
- Atta, N.M.M.; Mohamed, E.S.A. Determination of Fat–Soluble Vitamins and Natural Antioxidants in Seventeen Vegetable Oils. J. Food Dairy Sci. 2017, 8, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-deLeón, E.; Jiménez-Halla, J.O.C.; Báez, J.E.; Bah, M.M. A Simple and Efficient Method for the Partial Synthesis of Pure (3R,3’S)-Astaxanthin from (3R,3’R,6’R)-Lutein and Lutein Esters via (3R,3’S)-Zeaxanthin and Theoretical Study of Their Formation Mechanisms. Molecules 2019, 24, 1386. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Smith, G.C. Surface analytical science and automotive lubrication. J. Phys. D Appl. Phys. 2000, 33, R187. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results. J. Tribol. 1977, 99, 264–275. [Google Scholar] [CrossRef]
- Behrens, B.-A.; Brunotte, K.; Petersen, T.; Diefenbach, J. Mechanical and Thermal Influences on Microstructural and Mechanical Properties during Process-Integrated Thermomechanically Controlled Forging of Tempering Steel AISI 4140. Materials 2020, 13, 5772. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, H.Y.J. Methods for Measuring Lipid Oxidation, In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 1–27. [Google Scholar] [CrossRef]
- Innawong, B.; Mallikarjunana, P.; Irudayaraj, J.; Marcy, J.E. The determination of frying oil quality using Fourier transform infrared attenuated total reflectance. LWT-Food Sci. Technol. 2004, 37, 23–28. [Google Scholar] [CrossRef]
- ASTM E168-16. Standard Practices for General Techniques of Infrared Quantitative Analysis; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- Rodríguez-deLeón, E.; Bah, M.; Jiménez-Halla, J.O.C.; Bonilla-Cruz, J.; Estévez, M.; Báez, J.E. Synthesis and characterization of segmented poly(ester-urethane)s (PEUs) containing carotenoids. Polym. Chem. 2019, 10, 6580–6587. [Google Scholar] [CrossRef]
- Milanowska, J.; Polit, A.; Wasylewski, Z.; Gruszecki, W.I. Interaction of isomeric forms of xanthophyll pigment zeaxanthin with dipalmitoylphosphatidylcholine studied in monomolecular layers. J. Photochem. Photobiol. B Biol. 2003, 72, 1–9. [Google Scholar] [CrossRef]
- Yuan, C.; Jin, Z.; Xu, X. Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr. Polym. 2012, 89, 492–496. [Google Scholar] [CrossRef]
- Martins, A.J.; Cerqueira, M.A.; Cunha, R.L.; Vicente, A.A. Fortified beeswax oleogels: Effect of β-carotene on the gel structure and oxidative stability. Food Funct. 2017, 8, 4241–4250. [Google Scholar] [CrossRef] [PubMed]
- Domian, E.; Szczepaniak, M. Rheological behavior of concentrated emulsions containing carotenoids with different polarity. J. Food Eng. 2020, 274, 109827. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamental of Fluid Film Lubrication, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 2004; ISBN 0-8247-5371-2. [Google Scholar]
- Clancy, J.M. Lubricant Quality and Oxidative Stability of Cruciferae Oils. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, April 2013. [Google Scholar]
- Kumar, G.; Garg, H.C.; Gijawara, A. Experimental investigation of tribological effect on vegetable oil with CuO nanoparticles and ZDDP additives. Ind. Lubr. Tribol. 2019, 71, 499–508. [Google Scholar] [CrossRef]
- Anwar, M.; Wahyuningsih, T.D. Synthesis and characterization of dialkanolamides from castor oil (Ricinus communis) as nonionic surfactant. IOP Conf. Ser. Earth Environ. Sci. 2017, 101, 012037. [Google Scholar] [CrossRef] [Green Version]
- Chauke, N.P.; Mukaya, H.E.; Nkazi, D.B. Chemical modifications of castor oil: A review. Sci. Prog. 2019, 102, 199–217. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, D.; Li, R.; Zhou, H.; Liu, W.; Li, C.; Wang, S. Zeaxanthin in Soybean Oil: Impact of Oxidative Stability, Degradation Pattern, and Product Analysis. J. Agric. Food Chem. 2020, 68, 4981–4990. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Min, D.B. Effects, quenching mechanisms, and kinetics of carotenoids in chlorophyll-sensitized photooxidation of soybean oil. J. Agric. Food Chem. 1990, 38, 1630–1634. [Google Scholar] [CrossRef]
- Jabbarzadeh, A. Tribological Properties of Interfacial Molecular Films. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 864–874. [Google Scholar]
- Cyriac, F.; Akchurin, A. Thin Film Lubrication, Lubricants and Additives. In Tribology in Materials and Applications; Katiyar, J.K., Ramkumar, P., Rao, T.V.V.L.N., Davim, J.P., Eds.; Springer Nature: Geneva, Switzerland, 2020; pp. 33–76. [Google Scholar] [CrossRef]
- Hardell, J.; Hernandez, S.; Mozgovoy, S.; Pelcastre, L.; Courbon, C.; Prakash, B. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures. Wear 2015, 330–331, 223–229. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Investigation of friction and wear characteristics of palm biodiesel. Energy Convers. Manag. 2013, 67, 251–256. [Google Scholar] [CrossRef]
Material | Dimensions (mm) | Surface Roughness, Ra (µm) | Vickers Hardness (GPa) | Elasticity Modulus, E (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
AISI 4140 Steel Disks | 25.4 × 5 (d, t) | 0.03 | 1.9 | 210 | 0.27 |
WC balls | 3 (d) | 0.03 | 16.7 | 650 | 0.22 |
Physical Property | Temperature, °C | CO | CO + 0.001L | CO + 0.001Z | CO + 0.001A |
---|---|---|---|---|---|
Density (kg/m3) | 40 | 945 | 950 | 949 | 949 |
100 | 925 | 919 | 913 | 911 | |
Kinematic viscosity (mm2/s) | 40 | 265 | 221 | 226 | 231 |
100 | 22 | 22 | 22 | 24 | |
Viscosity index, VI | -- | 100 | 120 | 118 | 130 |
Pressure–viscosity coefficient (GPa−1) | 100 | 48.7 | 29.1 | 26.0 | 23.7 |
Ref. | Additive Concentration in CO | Lubricating Regime | Test Duration (Minutes) | Friction Response | Wear Response |
---|---|---|---|---|---|
[13] | 8 wt.% of hBN | Mixed-elastohydrodinamic lubrication | 10 | 22% increase | 28% decrease |
[14] | 0.3 v% of TiO2 | Not specified | 60 | 18% increase | 11% increase |
[15] | 0.7 wt.% of MoS2 | Not specified | 5 | 12.5% increase | 37% decrease |
This study | 0.001 m of L | Boundary lubrication | 252 | 14% increase | 15% decrease |
This study | 0.001 m of Z | Boundary lubrication | 252 | 25% increase | 8% decrease |
This study | 0.001 m of A | Boundary lubrication | 252 | 22% increase | 42% decrease |
This study | 0.86 v% of ZDDP | Boundary lubrication | 252 | 23% decrease | 31% increase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, K.J.; Hernández-Sierra, M.T.; Báez, J.E.; Rodríguez-deLeón, E.; Aguilera-Camacho, L.D.; García-Miranda, J.S. On the Tribological and Oxidation Study of Xanthophylls as Natural Additives in Castor Oil for Green Lubrication. Materials 2021, 14, 5431. https://doi.org/10.3390/ma14185431
Moreno KJ, Hernández-Sierra MT, Báez JE, Rodríguez-deLeón E, Aguilera-Camacho LD, García-Miranda JS. On the Tribological and Oxidation Study of Xanthophylls as Natural Additives in Castor Oil for Green Lubrication. Materials. 2021; 14(18):5431. https://doi.org/10.3390/ma14185431
Chicago/Turabian StyleMoreno, Karla J., María Teresa Hernández-Sierra, José E. Báez, Eloy Rodríguez-deLeón, Luis Daniel Aguilera-Camacho, and J. Santos García-Miranda. 2021. "On the Tribological and Oxidation Study of Xanthophylls as Natural Additives in Castor Oil for Green Lubrication" Materials 14, no. 18: 5431. https://doi.org/10.3390/ma14185431
APA StyleMoreno, K. J., Hernández-Sierra, M. T., Báez, J. E., Rodríguez-deLeón, E., Aguilera-Camacho, L. D., & García-Miranda, J. S. (2021). On the Tribological and Oxidation Study of Xanthophylls as Natural Additives in Castor Oil for Green Lubrication. Materials, 14(18), 5431. https://doi.org/10.3390/ma14185431