Laser Heating Study of the High-Temperature Interactions in Nanograined Uranium Carbides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Characterization
2.3. The Laser-Heating Method
3. Results and Discussion
4. Conclusions
- The solidification point of nanostructured UC2−y was observed to occur at 2713 K ± 30 K, and the α-UC2– β-UC2 solid–solid phase transition at 2038 K, both results being in line with existing literature data for the corresponding bulk material.
- Post-melting material characterization showed that the laser heating treatment up to melting induced grain growth even on the short time scale employed here (<500 ms), but grain sizes were still nanoscopic, ranging between 10 and 20 nm. Moreover, Raman spectroscopy showed that re-solidified grains contained less-disordered graphite compared to the as-fabricated ones.
- It can therefore be inferred that the excess carbon inhibited grain growth in the present samples.
- Although grain-size-related melting point variations cannot be excluded in samples with smaller grains, this investigation suggests that in the present samples, the grain size effect on the melting–solidification temperature was smaller than the current experimental uncertainty.
- Finally, the present study indicates that the nanostructured UC2−y materials can be retained as good candidates for porous, nanostructured spallation targets in terms of their high-temperature resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravn, H.L.; Allardyce, B.W. On-Line Mass Separators. In Treatise on Heavy Ion Science; Bromley, D.A., Ed.; Springer: Boston, MA, USA, 1989. [Google Scholar]
- Prete, G.; Andrighetto, A.; Biasetto, L.; Manzolaro, M.; Gramegna, F.; Lombardi, A.; Pisent, A.; Esposito, J.; Fagotti, E.; Cinausero, M.; et al. The SPES project: An ISOL facility for exotic beams. J. Phys. Conf. Ser. 2009, 168, 012022. [Google Scholar] [CrossRef]
- Alton, G.D.; Carter, H.K.; Lee, I.Y.; Jones, C.M.; Kormicki, J.; Olsen, D.K. Studies of the release properties of ISOL-target materials using ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 1992, 66, 492–502. [Google Scholar] [CrossRef]
- Gottberg, A. Target material for exotic ISOL beams. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2016, 376, 8–15. [Google Scholar] [CrossRef]
- 5. Roberto, J.B.; de la Rubia, T.D. Basic Research Needs for Advanced Nuclear Energy Systems: Report of the Basic Energy Sciences Workshop; Office of Basic Energy Sciences, DOE: Washington, DC, USA, 2006.
- Manara, D.; De Bruycker, F.; Boboridis, K.; Tougait, O.; Eloirdi, R.; Malki, M. High temperature radiance spectroscopy measurements of solid and liquid uranium and plutonium carbides. J. Nucl. Mater. 2012, 426, 126–138. [Google Scholar] [CrossRef]
- Greene, J.P.; Levand, A.; Nolen, J.; Burtseva, T. Uranium carbide fission target R&D for RIA—An update. Nucl. Phys. A 2004, 746, 425–428. [Google Scholar]
- Greene, J.P.; Burtseva, T.; Neubauer, J.; Nolen, J.A.; Villari, A.C.C.; Gomes, I.C. Characterization studies of prototype ISOL targets for the RIA. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2005, 241, 986–990. [Google Scholar] [CrossRef]
- Terrani, K.A.; Wang, D.; Ott, L.J.; Montgomery, R.O. The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents. J. Nucl. Mater. 2014, 448, 512–519. [Google Scholar] [CrossRef]
- Grimes, R.W.; Konings, R.J.M.; Edwards, L. Greater tolerance for nuclear materials. Nat. Mater. 2008, 7, 683–685. [Google Scholar] [CrossRef]
- Spino, J.; Santa Cruz, H.; Jovani-Abril, R.; Birtcher, R. Ferrero, C. Bulk-nanocrystalline oxide nuclear fuels—An innovative material option for increasing fission gas retention, plasticity and radiation-tolerance. J. Nucl. Mater. 2012, 422, 27–44. [Google Scholar] [CrossRef]
- Ramos, J.P.; Gottberg, A.; Augusto, R.S.; Mendonca, T.M.; Riisager, K.; Seiffert, C.; Bowen, P.; Senos, A.M.R.; Stora, T. Target nanomaterials at CERN-ISOLDE: Synthesis and release data. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2016, 376, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Stora, T.; Fernandes, S.; Mathot, S.; Bowen, P. Nanostructured Target for Isotope Production. U.S. Patent no 9055658, 9 June 2009. [Google Scholar]
- Mei, Q.S.; Lu, K. Melting and superheating of crystalline solids: From bulk to nanocrystals. Prog. Mater. Sci. 2007, 52, 1175–1262. [Google Scholar] [CrossRef]
- Manara, D.; De Bruycker, F.; Sengupta, A.K.; Agarwal, R.; Kamath, H.S. The Actinide Carbides. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Utton, C.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Manara, D. Laser Melting of Uranium Carbides. J. Nucl. Mater. 2009, 385, 443–448. [Google Scholar] [CrossRef]
- Chowdhury, S.; Maria, L.; Cruz, A.; Manara, D.; Dieste-Blanco, O.; Stora, T.; Gonçalves, A.P. Uranium carbide fibers with nano-grains as starting materials for ISOL targets. Nanomaterials 2020, 10, 2458. [Google Scholar] [CrossRef] [PubMed]
- Nolze, G.; Kraus, W. Powder Cell for Windows, Version 2.2; Federal Institute for Materials Research and Testing: Berlin, Germany, 1999. [Google Scholar]
- DeWitt, D.P.; Richmond, J.C. Thermal radiative properties of materials. In Theory and Practice of Radiation Thermometry; DeWitt, D.P., Nutter, G.D., Eds.; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Neuer, G.; Fiessler, L.; Groll, M.; Schreiber, E. Critical analysis of the different methods of multiwavelength pyrometry. In Temperature: Its Measurement and Control in Science and Industry; Schooley, J.F., Ed.; AIP: New York, NY, USA, 1992; Volume 6, pp. 787–789. [Google Scholar]
- Manara, D.; Sheindlin, M.; Heinz, W.; Ronchi, C. New techniques for high temperature melting measurements in volatile refractory materials via laser surface heating. Rev. Sci. Instrum. 2008, 79, 113901–113908. [Google Scholar] [CrossRef] [PubMed]
- De Bruycker, F.; Boboridis, K.; Konings, R.J.M.; Rini, M.; Eloirdi, R.; Guéneau, C.; Dupin, N.; Manara, D. On the melting behaviour of uranium/plutonium mixed dioxides with high-Pu content: A laser heating study. J. Nucl. Mater. 2011, 419, 186–193. [Google Scholar] [CrossRef]
- Bedford, R.E.; Bonnier, G.; Maas, H.; Pavese, F. Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points. Metrologia 1996, 33, 133–154. [Google Scholar] [CrossRef]
- Manara, D.; Soldi, L.; Mastromarino, S.; Boboridis, K.; Robba, D.; Vlahovic, L.; Konings, R. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident. J. Vis. Exp. 2017, 130, e54807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elorrieta, J.M.; Bonales, L.J.; Rodríguez-Villagra, N.; Baonza, V.G.; Cobos, J. A detailed Raman and X-ray study of UO2+x oxides and related structure transitions. Phys. Chem. Chem. Phys. 2016, 18, 28209–28216. [Google Scholar] [CrossRef]
- Jones, D.W.; McColm, I.J.; Steadman, R.; Yerkess, J. A Neutron-Diffraction Study of the Tetragonal-Monoclinic Crystal Structures of Some Uranium-Thorium Dicarbides. J. Solid State Chem. 1987, 68, 219–226. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effect. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Chevalier, P.Y.; Fischer, E. Thermodynamic Modeling of the C-U and B-U Binary Systems. J. Nucl. Mater. 2001, 288, 100–129. [Google Scholar] [CrossRef]
- Benz, R.; Hoffman, C.G.; Rupert, G.N. UC-UC2 Phase Boundaries. High Temp. Sci. 1969, 1, 342–359. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, S.; Manara, D.; Dieste-Blanco, O.; Robba, D.; Gonçalves, A.P. Laser Heating Study of the High-Temperature Interactions in Nanograined Uranium Carbides. Materials 2021, 14, 5568. https://doi.org/10.3390/ma14195568
Chowdhury S, Manara D, Dieste-Blanco O, Robba D, Gonçalves AP. Laser Heating Study of the High-Temperature Interactions in Nanograined Uranium Carbides. Materials. 2021; 14(19):5568. https://doi.org/10.3390/ma14195568
Chicago/Turabian StyleChowdhury, Sanjib, Dario Manara, Oliver Dieste-Blanco, Davide Robba, and António Pereira Gonçalves. 2021. "Laser Heating Study of the High-Temperature Interactions in Nanograined Uranium Carbides" Materials 14, no. 19: 5568. https://doi.org/10.3390/ma14195568
APA StyleChowdhury, S., Manara, D., Dieste-Blanco, O., Robba, D., & Gonçalves, A. P. (2021). Laser Heating Study of the High-Temperature Interactions in Nanograined Uranium Carbides. Materials, 14(19), 5568. https://doi.org/10.3390/ma14195568