Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision
Abstract
:1. Introduction
2. Image Acquisition System and Preprocessing
2.1. Design of Adjustable Image Acquisition System
2.2. Image Preprocessing
3. Failure Region Extraction Methods
3.1. Extraction of Failure Region on the Flank Face and Tool Tip
3.2. Extraction of Failure Region on the Rake Face
4. System Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tönshoff, H.; Wulfsberg, J.; Kals, H.J.; König, W.; Luttervelt, C. Developments and trends in monitoring and control of machining processes. CIRP Ann. 1988, 37, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Tlusty, J.; Andrews, G. A critical review of sensors for unmanned machining. CIRP Ann. 1983, 32, 563–572. [Google Scholar] [CrossRef]
- Kwon, Y.; Fischer, G. A novel approach to quantifying tool wear and tool life measurements for optimal tool management. Int. J. Mach. Tool. Manu. 2003, 43, 359–368. [Google Scholar] [CrossRef]
- Ravindra, H.; Srinivasa, Y.; Krishnamurthy, R. Acoustic emission for tool condition monitoring in metal cutting. Wear 1997, 212, 78–84. [Google Scholar] [CrossRef]
- Li, X. A brief review: Acoustic emission method for tool wear monitoring during turning. J. Mach. Tool. Manu. 2002, 42, 157–165. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, D.; Cotterell, M. Temperature measurement in single point turning. J. Mater. Process. Technol. 2001, 118, 301–308. [Google Scholar] [CrossRef]
- Scheffer, C.; Heyns, P. Wear monitoring in turning operations using vibration and strain measurements. Mech. Syst. Signal Pract. 2001, 15, 1185–1202. [Google Scholar] [CrossRef]
- Carden, E.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Zhang, Y.; Xie, Q. Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sensor. Actuat. A Phys. 2014, 209, 24–32. [Google Scholar] [CrossRef]
- Nouioua, M.; Bouhalais, M. Vibration-based tool wear monitoring using artificial neural networks fed by spectral centroid indicator and RMS of CEEMDAN modes. Int. J. Adv. Manuf. Technol. 2021, 115, 3149–3161. [Google Scholar] [CrossRef]
- Salgado, D.; Alonso, F. An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tool. Manu. 2007, 47, 2140–2152. [Google Scholar] [CrossRef]
- Stein, J.; Wang, C. Analysis of Power Monitoring on AC induction drive systems. J. Dyn. Syst. Meas. Control 1990, 112, 239–248. [Google Scholar] [CrossRef]
- Axinte, D.; Gindy, N. Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. Int. J. Prod. Res. 2004, 42, 2679–2691. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Lee, S. Statistical analysis of cutting force ratios for flank-wear monitoring. J. Mater. Process. Technol. 1998, 74, 104–114. [Google Scholar] [CrossRef]
- Teti, R.; Jemielniak, K.; O’Donnell, G.; Dornfeld, D. Advanced monitoring of machining operations. CIRP Ann. Manuf. Technol. 2010, 59, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Kurada, S.; Bradley, C. A review of machine vision sensors for tool condition monitoring. Comput. Ind. 1997, 34, 55–72. [Google Scholar] [CrossRef]
- Dutta, S.; Pal, S.; Mukhopadhyay, S.; Sen, R. Application of digital image processing in tool condition monitoring: A review. CIRP J. Manuf. Sci. Technol. 2013, 6, 212–232. [Google Scholar] [CrossRef]
- Ong, P.; Lee, W.; Lau, R. Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. Int. J. Adv. Manuf. Technol. 2019, 104, 1369–1379. [Google Scholar] [CrossRef]
- Wang, W.; Hong, G.; Wong, Y. Flank wear measurement by a threshold independent method with sub-pixel accuracy. Int. J. Mach. Tool. Manu. 2006, 46, 199–207. [Google Scholar] [CrossRef]
- Wang, W.; Wong, Y.; Hong, G. Flank wear measurement by successive image analysis. Comput. Ind. 2005, 56, 816–830. [Google Scholar] [CrossRef]
- Ryabov, O.; Mori, K.; Kasashima, N. An in-process direct monitoring method for milling tool failures using a laser sensor. CIRP Ann. 1996, 45, 97–100. [Google Scholar] [CrossRef]
- Kassim, A.; Mannan, M.; Jing, M. Machine tool condition monitoring using workpiece surface texture analysis. Mach. Vis. Appl. 2000, 11, 257–263. [Google Scholar] [CrossRef]
- Yu, H.; Wang, K.; Zhang, R.; Wu, X.; Tong, Y.; Wang, R.; He, D. An improved tool wear monitoring method using local image and fractal dimension of workpiece. Math. Probl. Eng. 2021, 2021, 9913581. [Google Scholar] [CrossRef]
- Li, L.; An, Q. An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis. Measurement 2016, 79, 44–52. [Google Scholar] [CrossRef]
- Yuan, Q.; Cui, N.; Liu, X.; Zhang, L.; Yan, F.; Hu, M. The image recognizing method of chip shape based on expanding feature. J. Harbin Univ. Sci. Technol. 2003, 8, 45–47. [Google Scholar]
- Zhang, P.; Guo, Y.; Wang, B. Novel tool wear monitoring method in milling difficult-to-machine materials using cutting chip formation. J. Phys. Conf. Ser. 2017, 842, 012042. [Google Scholar] [CrossRef]
- Pagani, L.; Parenti, P.; Cataldo, S.; Scott, P.; Annoni, M. Indirect cutting tool wear classification using deep learning and chip colour analysis. Int. J. Adv. Manuf. Technol. 2020, 111, 1099–1114. [Google Scholar] [CrossRef]
- Kurada, S.; Bradley, C. A machine vision system for tool wear assessment. Tribol. Int. 1997, 30, 295–304. [Google Scholar] [CrossRef]
- Loizou, J.; Tian, W.; Robertson, J.; Camelio, J. Automated wear characterization for broaching tools based on machine vision systems. J. Manuf. Syst. 2015, 37, 558–563. [Google Scholar] [CrossRef]
- Lins, R.; Araujo, P.; Corazzim, M. In-process machine vision monitoring of tool wear for Cyber-Physical Production Systems. Robot. Com. Int. Manuf. 2020, 61, 101859. [Google Scholar] [CrossRef]
- Xu, L.; Niu, M.; Zhao, D.; Xing, N.; Fan, F. Methodology for the immediate detection and treatment of wheel wear in contour grinding. Precis. Eng. 2019, 60, 405–412. [Google Scholar] [CrossRef]
- Sun, W.; Yeh, S. Using the machine vision method to develop an on-machine insert condition monitoring system for computer numerical control turning machine tools. Materials 2018, 11, 1977. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, C.; Guo, S.; Zhou, L. Research on tool wear detection based on machine vision in end milling process. Prod. Eng. Res. Dev. 2012, 6, 431–437. [Google Scholar] [CrossRef]
- Gonzalez, R.; Woods, R. Digital Image Processing, 4th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Deng, G.; Cahill, L. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE Nuclear Science Symposium & Medical Imaging Conference, San Francisco, CA, USA, 30 October–6 November 1993; IEEE: Piscataway, NJ, USA, 1993. [Google Scholar]
- Chervyakov, N.; Lyakhov, P.; Orazaev, A.; Valueva, M. Efficiency analysis of the image impulse noise cleaning using median filters with weighted central element. In Proceedings of the 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017, Novosibirsk, Russia, 18–22 September 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017. [Google Scholar]
- Windyga, P. Fast impulsive noise removal. IEEE Trans. Image Process. 2001, 10, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Jia, Z.; Qin, X. A new mixed filter for image denoising. Laser J. 2007, 28, 57–59. [Google Scholar]
- Sahoo, P.; Soltani, S.; Wong, A. A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 1988, 41, 233–260. [Google Scholar] [CrossRef]
- Pham, D.; Xu, C.; Prince, J. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2000, 2, 315–337. [Google Scholar] [CrossRef]
- Pare, S.; Kumar, A.; Singh, G.; Bajaj, V. Image segmentation using multilevel thresholding: A research review. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1–29. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cyb. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Sha, C.; Hou, J.; Cui, H. A robust 2D Otsu’s thresholding method in image segmentation. J. Vis. Commun. Image. R. 2016, 41, 339–351. [Google Scholar] [CrossRef]
- Wang, W.; Duan, L.; Wang, Y. Fast image segmentation using two-dimensional Otsu based on estimation of distribution algorithm. J. Elect. Comput. Eng. 2017, 2017, 1735176. [Google Scholar] [CrossRef] [Green Version]
- Dubes, R.; Jain, A.; Nadabar, S.; Chen, C. MRF model-based algorithms for image segmentation. In Proceedings of the 10th International Conference on Pattern Recognition, Atlantic City, NJ, USA, 16–21 June 1990; IEEE: Piscataway, NJ, USA, 1990. [Google Scholar]
- Deng, H.; Clausi, D. Unsupervised image segmentation using a simple MRF model with a new implementation scheme. Pattern Recogn. 2004, 37, 2323–2335. [Google Scholar] [CrossRef]
- D’Elia, C.; Poggi, G.; Scarpa, G. A tree-structured Markov random field model for Bayesian image segmentation. IEEE Trans. Image Process. 2003, 12, 1259–1273. [Google Scholar] [CrossRef]
- Sarkar, A.; Biswas, M.; Sharma, K. A simple unsupervised MRF model based image segmentation approach. IEEE Trans. Image Process. 2000, 9, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Kato, Z.; Pong, T. A Markov random field image segmentation model for color textured images. Image Vis. Comput. 2006, 24, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Berthod, M.; Kato, Z.; Yu, S.; Zerubia, J. Bayesian image classification using Markov random fields. Image Vis. Comput. 1996, 14, 285–295. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. 1984, PAMI-6, 721–741. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Yin, J.; Zhang, J.; Zhang, H.; Lu, Z. Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision. Materials 2021, 14, 5690. https://doi.org/10.3390/ma14195690
Wei W, Yin J, Zhang J, Zhang H, Lu Z. Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision. Materials. 2021; 14(19):5690. https://doi.org/10.3390/ma14195690
Chicago/Turabian StyleWei, Wenming, Jia Yin, Jun Zhang, Huijie Zhang, and Zhuangzhuang Lu. 2021. "Wear and Breakage Detection of Integral Spiral End Milling Cutters Based on Machine Vision" Materials 14, no. 19: 5690. https://doi.org/10.3390/ma14195690