Formation and Growth of Intermetallic Compounds during Reactions between Liquid Gallium and Solid Nickel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimen Preparation
2.2. Characterization
3. Results
3.1. Identification of the Ga-Ni Interfacial IMCs
3.2. Growth Mechanism of Ga7Ni3 IMCs
4. Conclusions
- (1)
- The IMC double layer was observed after the reactions consisted of a Ga7Ni3 bottom layer formed during the reaction, and a GaxNi top layer which was precipitated during the cooling process. The Ga7Ni3 layers were thickened with increasing reaction time, while the GaxNi layers were formed with a similar thickness of ~10 μm for all specimens reacted.
- (2)
- The Ga-rich GaxNi phase possessed about 89–95 at.% of Ga, larger than the 83.3 at.% of Ga5Ni reported. This was not detected by XRD analysis, suggesting that the microstructure may not be perfectly crystalline, but nanocrystalline, or amorphous.
- (3)
- The Ga7Ni3 layers were generally porous, and consisted of rod-type IMCs with empty holes between them. These empty channels were filled with liquid Ga during the reactions, into which the Ni atoms diffused, possibly playing an important role in Ga7Ni3 growth.
- (4)
- The time exponents for Ga7Ni3 growth were estimated to be 1.1–1.5, which is thought to be governed by interface reaction-controlled kinetics supported by short-range diffusion. The activation energy for Ga7Ni3 growth was determined as 49.1 KJ/mol.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References and Note
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Liu, T.; Sen, P.; Kim, C.J. Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices. J. Microelectromech. Syst. 2011, 21, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Dickey, M.D. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Khoshmanesh, K.; Tang, S.Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-zadeh, K.; Dickey, M.D. Liquid metal enabled microfluidics. Lab. Chip 2017, 17, 974–993. [Google Scholar] [CrossRef]
- Blaiszik, B.J.; Kramer, S.L.B.; Grady, M.E.; McIlroy, D.A.; Moore, J.S.; Sottos, N.R.; White, S.R. Autonomic Restoration of Electrical Conductivity. Adv. Mater. 2012, 24, 398–401. [Google Scholar] [CrossRef]
- Mineart, K.P.; Lin, Y.; Desai, S.C.; Krishnan, A.S.; Spontak, R.J.; Dickey, M.D. Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter 2013, 9, 7695–7700. [Google Scholar] [CrossRef]
- Palleau, E.; Reece, S.; Desai, S.C.; Smith, M.E.; Dickey, M.D. Self-Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics. Adv. Mater. 2013, 25, 1589–1592. [Google Scholar] [CrossRef]
- Gao, Y.; Bando, Y. Nanotechnology: Carbon nanothermometer containing gallium. Nature 2002, 415, 599. [Google Scholar] [CrossRef]
- Sivan, V.; Tang, S.Y.; O’Mullane, A.P.; Petersen, P.; Eshtiaghi, N.; Kalantar-zadeh, K.; Mitchell, A. Liquid Metal Marbles. Adv. Funct. Mater. 2013, 23, 144–152. [Google Scholar] [CrossRef]
- Kim, B.; Jang, J.; You, I.; Park, J.; Shin, S.; Jeon, G.; Kim, J.K.; Jeong, U. Interfacing Liquid Metals with Stretchable Metal Conductors. ACS Appl. Mater. Interfaces 2015, 7, 7920–7926. [Google Scholar] [CrossRef]
- Tabatabai, A.; Fassler, A.; Usiak, C.; Majidi, C. Liquid-Phase Gallium–Indium Alloy Electronics with Microcontact Printing. Langmuir 2013, 29, 6194–6200. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, N.; Bedair, S.S.; Kierzewski, I.M. Ultrafine Pitch Stencil Printing of Liquid Metal Alloys. ACS Appl. Mater. Interfaces 2017, 9, 1178–1182. [Google Scholar] [CrossRef]
- Daalkhaijav, U.; Yirmibesoglu, O.D.; Walker, S.; Mengüç, Y. Rheological Modification of Liquid Metal for Additive Manufacturing of Stretchable Electronics. Adv. Mater. Technol. 2018, 3, 1700351. [Google Scholar] [CrossRef]
- Kotadia, H.R.; Howes, P.D.; Mannan, S.H. A review: On the development of low melting temperature Pb-free solders. Microelectron. Reliab. 2014, 54, 1253–1273. [Google Scholar] [CrossRef]
- Ludwig, W.; Bellet, D. Penetration of liquid gallium into the grain boundaries of aluminium: A synchrotron radiation microtomographic investigation. Mater. Sci. Eng. A 2000, 281, 198–203. [Google Scholar] [CrossRef]
- Wolski, K.; Laporte, V.; Marie, N.; Biscondi, M. About the Importance of Nanometer-Thick Intergranular Penetration in the Analysis of Liquid Metal Embrittlement. Interface Sci. 2001, 9, 183–189. [Google Scholar] [CrossRef]
- Lin, S.K.; Cho, C.L.; Chang, H.M. Interfacial Reactions in Cu/Ga and Cu/Ga/Cu Couples. J. Elec. Mater. 2014, 43, 204–211. [Google Scholar] [CrossRef]
- Lin, S.; Chang, H.; Cho, C.; Liu, Y.; Kuo, Y. Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electron. Mater. Lett. 2015, 11, 687–694. [Google Scholar] [CrossRef]
- Chen, S.W.; Lin, J.M.; Yang, T.C.; Du, Y.H. Interfacial Reactions in the Cu/Ga/Co and Cu/Ga/Ni Samples. J. Elec. Mater. 2019, 48, 3643–3654. [Google Scholar] [CrossRef]
- Lin, S.K.; Yeh, C.Y.; Wang, M.J. On the formation mechanism of solid-solution Cu-to-Cu joints in the Cu/Ni/Ga/Ni/Cu system. Mater. Charact. 2018, 137, 14–23. [Google Scholar] [CrossRef]
- Schmetterer, C.; Flandorfer, H.; Lengauer, C.L.; Bros, J.P.; Ipser, H. The system Ga–Ni: A new investigation of the Ga-rich part. Intermetallics 2010, 18, 277–285. [Google Scholar] [CrossRef]
- Okamoto, H. Ga-Ni (Gallium-Nickel). J. Phase Equilib. Diffus. 2008, 29, 296. [Google Scholar] [CrossRef]
- Yamazaki, T.; Terayami, K.; Shimazaki, T.J. Mechanical alloying between Ni powder and liquid Ga. Mater. Sci. Lett. 1997, 16, 1357. [Google Scholar] [CrossRef]
- Yakovleva, S.V.; Rogova, S.T.; Obukhova, G.Z.; Morzheedova, R.N.; Karal’nik, D.M. USSR, Nauchnye Trudy, Gosudarstvennyi Nauchno-Issledovatel’skii i Proektnyi Institut Redkometallicheskoi. Promyshlennosti 1974, 57, 45.
- Kim, H.; Tu, K.N. Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys. Rev. B 1996, 53, 16027–16034. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Fournelle, R.A.; Liang, J. Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control. J. Electron. Mater. 1998, 27, 1167–1176. [Google Scholar] [CrossRef]
- Shen, J.; Chan, Y.C.; Liu, S.Y. Growth mechanism of Ni3Sn4 in a Sn/Ni liquid/solid interfacial reaction. Acta. Mater. 2009, 57, 5196–5206. [Google Scholar] [CrossRef]
- Görlich, J.; Baither, D.; Schmitz, G. Reaction kinetics of Ni/Sn soldering reaction. Acta. Mater. 2010, 58, 3187–3197. [Google Scholar] [CrossRef]
- Sohn, Y.C. Effect of Morphological Change of Ni3Sn4 Intermetallic Compounds on the Growth Kinetics in Electroless Ni-P/Sn-3.5Ag Solder Joint. Metall. Mater. Trans. A. 2020, 51, 2905–2914. [Google Scholar] [CrossRef]
- Li, J.F.; Agyakwa, P.A.; Johnson, C.M. Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 2011, 59, 1198–1211. [Google Scholar] [CrossRef]
System | Temperature (°C) | IMC | Time Exponent (1/n) | Activation Energy (kJ/mol) | Reference |
---|---|---|---|---|---|
Cu/Ga | 160 | CuGa2 (+Cu9Ga4) | 1.00 | - | [17] |
200, 220, 240 | CuGa2 (+Cu9Ga4) | 0.50, 0.47, 0.54 | 23.8 | ||
300 | Cu9Ga4 | 0.31 | - | ||
Cu/Ga | 350, 500 | Cu9Ga4 | ~0.5 | - | [19] |
Ni/Ga | 200, 350 | Ga7Ni3 | ~0.5 | - | |
500 | Ga3Ni2 | ~0.5 | - | ||
Cu/Ga/Ni | 350 | Cu9Ga4, Ga7Ni3 | ~0.5 | - | |
500 | Cu9Ga4, Ga3Ni2 | ~0.5 | - | ||
Ni/Ga | 300 | Ga7Ni3 (+Ga3Ni2) | 1.004 | - | [20] |
* Ni/Ni/Ga | 300 | Ga7Ni3 (+Ga3Ni2) | 1.007 | - | |
Cu/Ni/Ga | 300 | Ga7Ni3 (+Ga3Ni2) | 0.739 | - | |
Ni/Ga | 250, 300, 350 | Ga7Ni3 | 0.88, 0.67, 0.73 | 49.1 | this study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, C.-L.; Sohn, Y. Formation and Growth of Intermetallic Compounds during Reactions between Liquid Gallium and Solid Nickel. Materials 2021, 14, 5694. https://doi.org/10.3390/ma14195694
Lee D, Kim C-L, Sohn Y. Formation and Growth of Intermetallic Compounds during Reactions between Liquid Gallium and Solid Nickel. Materials. 2021; 14(19):5694. https://doi.org/10.3390/ma14195694
Chicago/Turabian StyleLee, Doyoung, Chang-Lae Kim, and Yoonchul Sohn. 2021. "Formation and Growth of Intermetallic Compounds during Reactions between Liquid Gallium and Solid Nickel" Materials 14, no. 19: 5694. https://doi.org/10.3390/ma14195694
APA StyleLee, D., Kim, C.-L., & Sohn, Y. (2021). Formation and Growth of Intermetallic Compounds during Reactions between Liquid Gallium and Solid Nickel. Materials, 14(19), 5694. https://doi.org/10.3390/ma14195694