A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Absorption and PL Spectrum Measurements
2.2. OLED Fabrication
3. Results
3.1. Exciplex Host and the Red Emitters
3.2. Device Architecture Design of Deep-Red PhOLEDs with Double EMLs
3.3. Structures of the HIL
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lochner, C.M.; Khan, Y.; Pierre, A.; Arias, A.C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 2014, 5, 5745. [Google Scholar] [CrossRef] [Green Version]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Yokota, T.; Suzuki, T.; Lee, S.; Woo, T.; Yukita, W.; Koizumi, M.; Tachibana, Y.; Yawo, H.; Onodera, H.; et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 2020, 117, 21138–21146. [Google Scholar] [CrossRef]
- Mo, S.J.; Chung, P.-S.; Ahn, J.C. 630 nm-OLED accelerates wound healing in mice via regulation of cytokine release and genes expression of growth factors. Curr. Opt. Photon. 2019, 3, 485–495. [Google Scholar]
- Jeon, Y.; Choi, H.-R.; Lim, M.; Choi, S.; Kim, H.; Kwon, J.H.; Park, K.-C.; Choi, K.C. A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects. Adv. Mater. Technol. 2018, 3, 1700391. [Google Scholar] [CrossRef]
- Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K.J.; Matczyszyn, K.; Samuel, I.D.W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. NPJ Flex. Electron. 2019, 3, 18. [Google Scholar] [CrossRef]
- Jeon, Y.; Choi, H.-R.; Park, K.-C.; Choi, K.C. Flexible organic light-emitting-diode-based photonic skin for attachable phototherapeutics. J. Soc. Inf. Display 2020, 28, 324–332. [Google Scholar] [CrossRef]
- Moon, C.-K.; Suzuki, K.; Shizu, K.; Adachi, C.; Kaji, H.; Kim, J.-J. Combined inter- and intramolecular charge-transfer processes for highly efficient fluorescent organic light-emitting diodes with reduced triplet exciton quenching. Adv. Mater. 2017, 29, 1606448. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Gnanasekaran, P.; Chiang, Y.-C.; Yang, C.-C.; Chang, C.-H.; Liu, S.-H.; Lee, G.-H.; Chou, P.-T.; Chi, Y.; et al. Unprecedented homoleptic bis-tridentate iridium(iii) phosphors: Facile, scaled-up production, and superior chemical stability. Adv. Funct. Mater. 2017, 27, 1702856. [Google Scholar] [CrossRef]
- Hung, W.-Y.; Wang, T.-C.; Chiang, P.-Y.; Peng, B.-J.; Wong, K.-T. Remote steric effect as a facile strategy for improving the efficiency of exciplex-based OLEDs. ACS Appl. Mater. Interfaces 2017, 9, 7355–7361. [Google Scholar] [CrossRef]
- Tavgeniene, D.; Krucaite, G.; Baranauskyte, U.; Wu, J.-Z.; Su, H.-Y.; Huang, C.-W.; Chang, C.-H.; Grigalevicius, S. Phenanthro[9,10-d]imidazole based new host materials for efficient red phosphorescent OLEDs. Dyes Pigment. 2017, 137, 615–621. [Google Scholar] [CrossRef]
- Luo, D.; Liao, C.-W.; Chang, C.-H.; Tsai, C.-C.; Lu, C.-W.; Chuang, T.C.; Chang, H.-H. Approach to fast screen the formation of an exciplex. J. Phys. Chem. C 2020, 124, 10175–10184. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lee, S.; Kim, K.-H.; Kim, S.-Y.; Lee, J.-H.; Kim, J.-J. Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency. Adv. Funct. Mater. 2013, 23, 4914–4920. [Google Scholar] [CrossRef]
- Hamada, Y.; Sano, T.; Takahashi, H.; Fujii, T.; Nishio, Y.; Shibata, K. Organic light-emitting diodes using 3- or 5-hydroxyflavone-metal complexes. Appl. Phys. Lett. 1997, 71, 3338–3340. [Google Scholar] [CrossRef]
- Hung, W.-Y.; Chiang, P.-Y.; Lin, S.-W.; Tang, W.-C.; Chen, Y.-T.; Liu, S.-H.; Chou, P.-T.; Hung, Y.-T.; Wong, K.-T. Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor. ACS Appl. Mater. Interfaces 2016, 8, 4811–4818. [Google Scholar] [CrossRef] [PubMed]
- Lepeltier, M.; Dumur, F.; Wantz, G.; Vila, N.; Mbomekallé, I.; Bertin, D.; Gigmes, D.; Mayer, C.R. Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated iridium (iii) complex. J. Lumin. 2013, 143, 145–149. [Google Scholar] [CrossRef]
- Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; et al. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J. Am. Chem. Soc. 2003, 125, 12971–12979. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Hsieh, C.-T.; Wang, Y.-P.; Chuang, T.C.; Chang, H.-H.; Chang, C.-H. Pure exciplex-based white organic light-emitting diodes with imitation daylight emissions. RSC Adv. 2018, 8, 30582–30588. [Google Scholar] [CrossRef] [Green Version]
- Grigalevicius, S.; Tavgeniene, D.; Krucaite, G.; Griniene, R.; Lai, Y.-N.; Chiu, H.-H.; Chang, C.-H. Efficient blue and green phosphorescent oleds with host material containing electronically isolated carbazolyl fragments. Opt. Mater. 2018, 79, 446–449. [Google Scholar] [CrossRef]
- Liao, L.-S.; Slusarek, W.K.; Hatwar, T.K.; Ricks, M.L.; Comfort, D.L. Tandem organic light-emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector. Adv. Mater. 2008, 20, 324–329. [Google Scholar] [CrossRef]
- Goushi, K.; Kwong, R.; Brown, J.J.; Sasabe, H.; Adachi, C. Triplet exciton confinement and unconfinement by adjacent hole-transport layers. J. Appl. Phys. 2004, 95, 7798–7802. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Kuo, H.-H.; Luo, D.; Lai, Y.-N.; Li, W.-C.; Chang, C.-H.; Escudero, D.; Jen, A.K.-Y.; Chi, Y. Phenyl and pyrazolyl functionalized pyrimidine: Versatile chromophore of bis-tridentate Ir(iii) phosphors for organic light emitting diode devices. Chem. Mater. 2018, 31, 6453–6464. [Google Scholar] [CrossRef]
- Lai, Y.-N.; Chang, C.-H.; Wang, P.-C.; Chu, Y.-H. Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate. Org. Electron. 2019, 75, 105442. [Google Scholar] [CrossRef]
- Liao, C.-W.; Hsh, Y.-C.; Chu, C.-C.; Chang, C.-H.; Krucaite, G.; Volyniuk, D.; Grazulevicius, J.V.; Grigalevicius, S. Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes. Org. Electron. 2019, 67, 279–286. [Google Scholar] [CrossRef]
- Yi, R.-H.; Shao, C.-M.; Lin, C.-H.; Fang, Y.-C.; Shen, H.-L.; Lu, C.-W.; Wang, K.-Y.; Chang, C.-H.; Chen, L.-Y.; Chang, Y.-H. Dicyano-imidazole-based host materials possessing truly bipolar nature to realize efficient OLEDs with extremely high luminance. J. Phys. Chem. C 2020, 124, 20410–20423. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, H.; Zhang, Z.; Liu, Y.; Chen, J.; Ma, D. Highly efficient and stable tandem organic light-emitting devices based on HAT-CN/HAT-CN: TAPC/TAPC as a charge generation layer. J. Mater. Chem. C 2015, 3, 6809–6814. [Google Scholar] [CrossRef]
- Guo, Q.; Dai, Y.; Sun, Q.; Qiao, X.; Chen, J.; Zhu, T.; Ma, D. Properties of highly efficient charge generation and transport of multialternating organic heterojunctions and its application in organic light-emitting diodes. Adv. Electron. Mater. 2018, 4, 1800177. [Google Scholar] [CrossRef]
- Park, S.-Y.; Kim, H.-K.; Shin, D.-M. Synthesis and characterization of red phosphorescent iridium(iii) complexes based on electron-acceptor modulation of main ligand for high efficiency organic light-emitting diodes. Mol. Cryst. Liq. Cryst. 2016, 636, 38–44. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, S.E.; Oh, Y.N.; Kim, Y.K.; Shin, D.M. Synthesis and electroluminescent property of highly efficient phosphorescent red dopants based on modulated main ligands. Mol. Cryst. Liq. Cryst. 2017, 653, 118–124. [Google Scholar] [CrossRef]
- Sree, V.G.; Cho, W.; Shin, S.; Lee, T.; Gal, Y.-S.; Song, M.; Jin, S.-H. Highly efficient solution-processed deep-red emitting heteroleptic thiophene-phenylquinoline based Ir(iii) complexes for phosphorescent organic light-emitting diodes. Dyes Pigment. 2017, 139, 779–789. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, X.; Feng, Z.; Liu, B.; Zhong, D.; Zhang, J.; Zhou, G.; Wu, Z. Highly efficient deep-red organic light-emitting devices based on asymmetric iridium(iii) complexes with the thianthrene 5,5,10,10-tetraoxide moiety. ACS Appl. Mater. Interfaces 2019, 11, 26152–26164. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Wen, D.; Wu, W.; Zeng, Q.; Chen, S.; Wong, W.-Y. A simple and efficient approach toward deep-red to near-infrared-emitting iridium(iii) complexes for organic light-emitting diodes with external quantum efficiencies of over 10%. Chem. Sci. 2020, 11, 2342–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Yu, Z.; Zhuang, X.; Wang, J.; Wei, J.; Ye, K.; Zhang, Z.; Liu, Y.; Wang, Y. Achieving high-performance pure-red electrophosphorescent iridium(iii) complexes based on optimizing ancillary ligands. Chem. Eur. J. 2020, 26, 4410–4418. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, B.; Guo, Y.; Feng, Z.; Zhou, G.; Chen, Z.; Yang, X. Triphenylamine-based trinuclear Pt(ii) complexes for solution-processed OLEDs displaying efficient pure yellow and red emissions. Org. Electron. 2021, 91, 106101. [Google Scholar] [CrossRef]
Device | A | B | C | D | E | F | G | |
---|---|---|---|---|---|---|---|---|
EML1 (Ir(piq)2acac)/ EML2 (Ir(fliq)2acac) | 25 nm/ 0 nm | 13 nm/ 12 nm | 11 nm/ 14 nm | 9 nm/ 16 nm | 7 nm/ 18 nm | 5 nm/ 20 nm | 0 nm/ 25 nm | |
External Quantum Efficiency (%) | a | 19.0 | 20.3 | 21.5 | 20.7 | 17.5 | 17.1 | 13.7 |
b | 18.8 | 19.8 | 20.7 | 20.6 | 17.5 | 17.0 | 13.0 | |
c | 16.7 | 16.9 | 18.3 | 18.9 | 16.2 | 15.5 | 10.3 | |
Luminance Efficiency (cd/A) | a | 9.0 | 11.0 | 12.5 | 11.0 | 9.0 | 8.1 | 4.2 |
b | 8.9 | 10.8 | 12.0 | 10.9 | 8.9 | 8.1 | 4.0 | |
c | 7.9 | 9.2 | 10.6 | 10.0 | 8.3 | 7.3 | 3.2 | |
Power Efficiency (lm/W) | a | 11.8 | 14.8 | 17.8 | 14.6 | 11.5 | 10.4 | 5.8 |
b | 10.0 | 11.4 | 14.2 | 12.9 | 10.6 | 9.4 | 4.3 | |
c | 6.4 | 6.2 | 8.7 | 8.8 | 7.3 | 6.5 | 2.2 | |
Von (V) | d | 2.2 | 2.2 | 2.1 | 2.2 | 2.2 | 2.2 | 2.2 |
V (V) | e | 6.3 | 6.9 | 5.6 | 5.6 | 5.9 | 6.9 | - |
Lmax. (cd/m2) [V] | 26,763 [10.2] | 17,014 [9.6] | 31,116 [10.4] | 38,420 [9.6] | 27,799 [9.0] | 24,883 [9.0] | 10,085 [9.4] | |
FWHM (nm) | c | 90 | 94 | 97 | 100 | 100 | 100 | 88 |
Coverage ratio (%) | c | 80 | 85 | 88 | 89 | 90 | 88 | 76 |
CIE1931 coordinate (x, y) | b | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.67, 0.32) |
c | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.66, 0.33) |
Device | HIL Structure |
---|---|
E1 | HAT-CN (10 nm)/TAPC (40 nm) |
E2 | TAPC (50 nm) |
E3 | TAPC: HAT-CN 10 wt.% (10 nm)/TAPC (40 nm) |
E4 | HAT-CN (10 nm)/TAPC: HAT-CN 10 wt.% (10 nm)/TAPC (30 nm) |
E5 | HAT-CN (6 nm)/TAPC (8 nm)/HAT-CN (6 nm)/TAPC (30 nm) |
E6 | HAT-CN (6 nm)/TAPC (8 nm)/HAT-CN (6 nm)/ TAPC: HAT-CN 10 wt.% (8nm)/HAT-CN (6 nm)/TAPC (22 nm) |
E7 | HAT-CN (6 nm)/TAPC: HAT-CN 10 wt.% (8nm)/HAT-CN (6 nm)/TAPC: HAT-CN 10 wt.% (8nm)/HAT-CN (6 nm)/TAPC (22 nm) |
Device | E1 | E2 | E3 | E4 | E5 | E6 | E7 | |
---|---|---|---|---|---|---|---|---|
External Quantum Efficiency (%) | a | 17.5 | 19.1 | 18.8 | 19.1 | 19.1 | 19.3 | 18.9 |
b | 17.5 | 18.9 | 18.6 | 18.9 | 18.5 | 19.0 | 18.7 | |
c | 16.2 | 17.0 | 16.7 | 16.8 | 14.9 | 16.3 | 15.9 | |
Luminance Efficiency (cd/A) | a | 9.0 | 10.2 | 10.1 | 10.4 | 10.6 | 10.5 | 10.2 |
b | 8.9 | 10.1 | 10.0 | 10.3 | 10.2 | 10.3 | 10.1 | |
c | 8.3 | 9.1 | 9.0 | 9.2 | 8.2 | 8.8 | 8.6 | |
Power Efficiency (lm/W) | a | 11.5 | 13.8 | 13.6 | 13.6 | 14.0 | 13.7 | 13.2 |
b | 10.6 | 12.1 | 12.0 | 12.3 | 11.4 | 12.1 | 11.6 | |
c | 7.3 | 8.6 | 8.4 | 8.4 | 6.6 | 7.9 | 7.4 | |
Von (V) | d | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
V (V) | e | 5.9 | 5.2 | 5.9 | 6.2 | 9.0 | - | - |
Lmax. (cd/m2) [V] | 27,799 [9.0] | 31,996 [8.4] | 30,385 [9.0] | 28,823 [8.8] | 14,681 [9.8] | 21,148 [8.8] | 18,817 [9.6] | |
FWHM (nm) | c | 100 | 97 | 98 | 100 | 99 | 97 | 99 |
Coverage ratio (%) | c | 90 | 89 | 90 | 90 | 90 | 90 | 90 |
CIE1931 coordinate (x, y) | b | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.69, 0.31) | (0.68, 0.31) | (0.69, 0.31) |
c | (0.69, 0.31) | (0.68, 0.31) | (0.68, 0.31) | (0.68, 0.31) | (0.68, 0.31) | (0.69, 0.31) | (0.68, 0.31) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-L.; Chen, S.-Y.; Huang, D.-C.; Luo, D.; Chen, H.-W.; Wang, C.-Y.; Chang, C.-H. A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages. Materials 2021, 14, 5723. https://doi.org/10.3390/ma14195723
Chen W-L, Chen S-Y, Huang D-C, Luo D, Chen H-W, Wang C-Y, Chang C-H. A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages. Materials. 2021; 14(19):5723. https://doi.org/10.3390/ma14195723
Chicago/Turabian StyleChen, Wei-Ling, Shan-Yu Chen, Dun-Cheng Huang, Dian Luo, Hsueh-Wen Chen, Chih-Yuan Wang, and Chih-Hao Chang. 2021. "A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages" Materials 14, no. 19: 5723. https://doi.org/10.3390/ma14195723
APA StyleChen, W. -L., Chen, S. -Y., Huang, D. -C., Luo, D., Chen, H. -W., Wang, C. -Y., & Chang, C. -H. (2021). A Method to Realize Efficient Deep-Red Phosphorescent OLEDs with a Broad Spectral Profile and Low Operating Voltages. Materials, 14(19), 5723. https://doi.org/10.3390/ma14195723