Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Synthesis of the Extractants
2.3. Apparatus
2.4. Extraction and Stripping
3. Results and Discussion
3.1. Extraction from One-Component Solutions
3.1.1. Extraction of Palladium(II) Species
3.1.2. Extraction of Platinum(IV) Species
3.1.3. Effect of Extractant Concentration in the Organic Phase
3.2. Stripping from the Loaded Organic Phases
3.3. FT-IR Analysis of the Organic Phases
3.4. Extraction from Two-Component Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.; Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. [Google Scholar] [CrossRef]
- Rzelewska, M.; Regel-Rosocka, M. Wastes generated by automotive industry—Spent automotive catalysts. Phys. Sci. Rev. 2018, 20180021. [Google Scholar] [CrossRef]
- Rane, M.V. PGM ore processing: LIX reagents for palladium extraction & platinum stripping from Alamine 336 using NaOH-NaCl. Miner. Eng. 2019, 138, 119–124. [Google Scholar] [CrossRef]
- Oshima, T.; Iwao, S.; Matsuo, N.; Ohe, K. Extraction Behavior of Precious Metals in Hydrochloric-acid Media Using a Novel Amine Extractant Bearing a Furna Group. Solvent Extr. Res. Develop. Jpn. 2019, 26, 69–80. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sonu, C.H.; Lee, M.S. Separation of platinum(IV) and palladium(II) from concentrated hydrochloric acid solutions by mixtures of amines with neutral extractants. J. Ind. Eng. Chem. 2015, 32, 238–245. [Google Scholar] [CrossRef]
- Raju, B.; Rajesh Kumar, J.; Lee, J.Y.; Kwonc, H.S.; Lakshmi Kantam, M.; Ramachandra Reddy, B. Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods. J. Hazard. Mater. 2012, 227–228, 142–147. [Google Scholar] [CrossRef]
- Wei, W.; Cho, C.W.; Kim, S.; Song, M.H.; Kwame Bediako, J.; Yun, Y.S. Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. J. Mol. Liq. 2016, 216, 18–24. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Riaño, S.; Binnemans, K. Separation of precious metals by split-anion extraction using water-saturated ionic liquids. Green Chem. 2020, 22, 8375. [Google Scholar] [CrossRef]
- Regel-Rosocka, M.; Wisniewski, M.; Borowiak-Resterna, A.; Cieszynska, A.; Sastre, A.M. Selective extraction of palladium(II) from hydrochloric acid solutions with pyridinecarboxamides and ACORGA® CLX50. Sep. Purif. Technol. 2007, 53, 337–341. [Google Scholar] [CrossRef]
- Truong, H.T.; Lee, M.S.; Senanayake, G. Separation of Pt(IV), Rh(III) and Fe(III) in acid chloride leach solutions of glass scraps by solvent extraction with various extractants. Hydrometallurgy 2018, 175, 232–239. [Google Scholar] [CrossRef]
- Rzelewska-Piekut, M.; Regel-Rosocka, M. Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids. Sep. Purif. Technol. 2019, 212, 791–801. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wieczorek, D. Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy 2018, 175, 359–366. [Google Scholar] [CrossRef]
- Rzelewska, M.; Baczyńska, M.; Regel-Rosocka, M.; Wiśniewski, M. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions. Chem. Pap. 2016, 70, 454–460. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Q.; Xiang, Z.; Yang, Y. Separation of Pt(IV), Pd(II), Ru(III), and Rh(III) from chloride medium using liquid–liquid extraction with mixed imidazolium-based ionic liquids. Sep. Sci. Technol. 2018, 53, 2064–2073. [Google Scholar] [CrossRef]
- Yamada, M.; Rajiv Gandhi, M.; Shibayama, A. Rapid and selective recovery of palladium from platinum group metals and base metals using a thioamide-modified calix[4]arene extractant in environmentally friendly hydrocarbon fluids. Sci. Rep. 2018, 8, 16909. [Google Scholar] [CrossRef]
- Yamada, M.; Kaneta, Y.; Rajiv Gandhi, M.; Maheswara Rao Kunda, U.; Shibayama, A. Recovery of Pd(II) and Pt(IV) from leach liquors of automotive catalysts with calixarene-based di-n-alkylamino extractants in saturated hydrocarbon diluents. Hydrometallurgy 2019, 184, 103–108. [Google Scholar] [CrossRef]
- Torrejos, R.E.C.; Nisola, G.M.; Min, S.H.; Han, J.W.; Lee, S.-P.; Chung, W.-J. Highly selective extraction of palladium from spent automotive catalyst acid leachate using novel alkylated dioxa-dithiacrown ether derivatives. J. Ind. Eng. Chem. 2020, 89, 428–435. [Google Scholar] [CrossRef]
- Reis, M.T.A.; Ismael, M.R.C.; Wojciechowska, A.; Wojciechowska, I.; Aksamitowski, P.; Wieszczycka, K.; Carvalho, J.M.R. Zinc(II) recovery using pyridine oxime-ether—Novel carrier in pseudoemulsion hollow fiber strip dispersion system. Sep. Purif. Technol. 2019, 223, 168–177. [Google Scholar] [CrossRef]
- Wojciechowska, I.; Wieszczycka, K.; Wojciechowska, A.; Aksamitowski, P. Ether derivatives—Efficient Fe(III) extractants from HCl solution. Sep. Purif. Technol. 2019, 209, 756–763. [Google Scholar] [CrossRef]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction Principles and Practice; Marcel Dekker, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Bernardis, F.L.; Grant, R.A.; Sherrington, D.C. A review of methods of separation of the platinum-group metals through their chloro-complexes. React. Funct. Polym. 2005, 65, 205–217. [Google Scholar] [CrossRef]
- Pirogov, A.V.; Havel, J. Determination of platinum, palladium, osmium, iridium, rhodium and gold as chloro complexes by capillary zone electrophoresis. J. Chromatogr. A 1997, 772, 347–355. [Google Scholar] [CrossRef]
- Staszak, K.; Wojciechowska, I.; Staszak, M.; Wieszczycka, K. Surface activity measurements and quantum molecular modeling—The way to extraction behavior knowledge? J. Mol. Liq. 2020, 114513. [Google Scholar] [CrossRef]
- Rzelewska, M.; Baczyńska, M.; Wiśniewski, M.; Regel-Rosocka, M. Phosphonium ionic liquids as extractants for recovery of ruthenium(III) from acidic aqueous solutions. Chem. Pap. 2017, 71, 1065–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigrahi, S.; Dash, T.; Nathsarma, K.C.; Sarangi, K. Extraction of ruthenium using both tertiary and quaternary amine from chloride media. Sep. Sci. Technol. 2014, 49, 545–552. [Google Scholar] [CrossRef]
Aqueous Feed | Organic Phase | Extraction Efficiency (E, %) | Stripping Efficiency (S, %) | Ref. |
---|---|---|---|---|
Model solutions of Pd(II) or Pt(IV) and real leach solution: 0.39 g/dm3 Pt(IV), 0.5 g/dm3 Pd(II), 26 g/dm3 Fe ions, 20 g/dm3 Mn ions, 5.4 g/dm3 Ca(II), 6.2 g/dm3 Zn(II), 1.3 g/dm3 Cu(II), 8.6 g/dm3 Al(III), 0.3 g/dm3 Ni(II), 0.06 g/dm3 Co(II), 0.42 N H+ | LIX 84I or LIX 64N, or LIX 70, or LIX 984 in dodecane for Pd(II) Alamine 336 in kerosene for Pt(IV) | From leach solution: in I step: EPd~100% with 8% LIX 984 in dodecane at A/O = 5 and pH = 2.75 in II steps: EPt = 100% with 1% Alamine 336 in kerosene at A/O = 3 and pH = 1 | SPd = 100% Pd(II) stripping with 6 M HCl from the loaded organic phase scrubbed twice with 1.5 M H2SO4 (to remove Cu(II)) SPt = 100% with mixture of 1 M NaOH and 1 M NaCl | [3] |
120 mg/dm3 Pt(IV) and 50 mg/dm3 Pd(II) in 1–8 M HCl | Mixture of amines (Aliquat 336/Alamine 336/TOA) and neutral extractants (TBP/TOP/MIBK) in kerosene with decanol addition | EPt = 100%, EPd = 38% with 0.01 M Aliquat 336 and 0.4 M TBP in kerosene in 3 steps of counter current extraction at A/O = 1 HCl concentration ↑ (>3 M) = EPd and EPt ↓ | SPd = 87 ÷ 100% with 0.001 M thiourea in 0.1 ÷ 0.5 M HCl | [5] |
349.4 mg/dm3 Pt, 58.9 mg/dm3 Rh and 6700.8 mg/dm3 Mg, pH 3.4 | 0.01 M Aliquat 336 in kerosene | Two-step counter current simulation: EPt = ~100%, ERh = 0% (A/O = 3.3) | SPt = ~99.9% with 0.5 M thiourea in 0.5 M HCl (O/A = 6) | [6] |
200 mg/dm3 of each Au(III), Pt(IV), Pd(II) in a mixture solution of 0.1 M HCl | 0.6 g/dm3 Aliquat 336 in benzene | EAu > 99%, EPt = 5%, EPd = 7% (A/O = 1) pH ↑ (up to 4.5) = EPd and EPt ↑ | I stripping step: SPd = SPt = ~100%, SAu = 0.13% with 1 M HNO3 II stripping step: SAu = 100% with 0.05 M thiourea in 0.1 M HCl | [7] |
A model solution similar to leachate from end-of-life autocatalyst: 10.5 mg/dm3 Pt(IV), 24.0 mg/dm3 Pd(II), 6.81 mg/dm3 Rh(III) and impurities in 0.001 ÷ 6 M HCl | Pure ionic liquids: [A336][Cl], [A336][Br], [A336][I] | EAu = EPt = EPd = 100% with all the ILs HCl concentration ↑ (to 6 M) = ERh ↓ (to 20%) | I stripping step from [A336][I]: SPd = 89.8%, SRh = 4.25%, SAu~SPt < 1% with 1 M NH4OH II stripping step from [A336][I]: SAu = 100%, SPd~SPt~SRh < 10% with 1 M thiourea in 1 M HCl | [8] |
1514 mg/dm3 Pt(IV) and 178 mg/dm3 Rh(III), 1.6 mg/dm3 Fe(III) in HCl > 8.5 M | 0.05 M Cyanex 923 in kerosene or 0.07 M Cyanex 923 in toluene | EPt = 85%, EFe = 100%, ERh = 0% EPt = 40%, EFe = 100%, ERh = 0% | SPt = 100%, SFe = 0% with NaSCN solutions SPt = 100%, SFe = up to 60% with HCl solutions | [10] |
1.1 mM Pt(IV), 0.8 mM Pd(II), 0.6 mM Ru(III), 0.4 mM Rh(III) in 0.8 M HCl (total Cl− equal to 2.5 M) | 0.005 M Cyphos IL 101, Cyphos IL 102, Cyphos IL 104 in toluene | EPt~EPd > 95%, ERu = 55%, ERh < 15% (A/O = 1) | I stripping step from ILs: SPd = 69 ÷ 98.5% with 0.1 M thiourea in 0.5 M HCl II stripping step from ILs: SRu = 37.8% with 0.1 M KSCN, SPt = 69% with 1 M HNO3 | [11] |
HCl in the Feed, M | DPd(II) | |||
---|---|---|---|---|
After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | |
0.1 | 5.81 | >106 | 0.940 | 34.6 |
1 | 1.99 | >106 | 0.270 | 5.82 |
3 | 0.81 | >106 | 0.071 | 6.41 |
EPd(II), % | ||||
0.1 | 83.7 | 100 | 48.5 | 97.2 |
1 | 66.5 | 100 | 21.4 | 85.3 |
3 | 43.9 | 96.1 | 6.60 | 86.5 |
HCl in the Feed, M | After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | ||||
---|---|---|---|---|---|---|---|---|
H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | |
0.1 | 0.118 | 0.0065 | 0.119 | 0.0055 | 0.121 | 0.0035 | 0.1205 | 0.0040 |
1 | 1.111 | 0.0170 | 1.081 | 0.0470 | 1.082 | 0.0460 | 1.087 | 0.0410 |
3 | 3.112 | 0.0175 | 2.995 | 0.1345 | 3.043 | 0.0950 | 3.045 | 0.0930 |
HCl in the Feed, M | DPt(IV) | |||
---|---|---|---|---|
After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | |
0.1 | 1.74 | 13.5 | 0.949 | 0.388 |
1 | 1.39 | >106 | 0.799 | 4.02 |
3 | 1.03 | >106 | 0.726 | 6.97 |
EPt(IV), % | ||||
0.1 | 62.2 | 93.8 | 48.7 | 27.9 |
1 | 58.0 | 99.7 | 44.4 | 80.1 |
3 | 50.4 | 100 | 42.0 | 87.5 |
HCl in the Feed, M | After Extraction with Eh4IA-PrCl | After Extraction with D3EI-PrCl | After Extraction with Eh3MI-PrCl | After Extraction with D3MI-PrCl | ||||
---|---|---|---|---|---|---|---|---|
H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | H+(aq), M | H+(org), M | |
0.1 | 0.120 | 0.0015 | 0.120 | 0.0015 | 0.120 | 0.0015 | 0.1195 | 0.0020 |
1 | 1.143 | 0.018 | 1.035 | 0.126 | 1.146 | 0.0150 | 1.1155 | 0.0455 |
3 | 3.118 | 0.058 | 3.118 | 0.058 | 2.974 | 0.1160 | 3.0720 | 0.0180 |
Extractant Concentration in the Organic Phase, M | D after Extraction with: | |||
---|---|---|---|---|
D3MI-PrCl | D3EI-PrCl | |||
Pd(II) | Pt(IV) | Pd(II) | Pt(IV) | |
0.001 | 0.011 | 0.014 | 0.15 | 0.13 |
0.0025 | 0.63 | 0.190 | 1.31 | 1.10 |
0.005 | 5.82 | 4.02 | >106 | >106 |
0.01 | >106 | >106 | >106 | >106 |
0.02 | >106 | >106 | >106 | >106 |
0.03 | >106 | >106 | >106 | >106 |
Stripping Phases | Loaded Organic Phases | |||||||
---|---|---|---|---|---|---|---|---|
Eh3MI-PrCl | D3MI-PrCl | D3EI-PrCl | Eh4IA-PrCl | |||||
Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | |
0.1 M ammonia | - | - | (+/−) | (+/−) | (+/−) | (+/−) | - | - |
3 M HNO3 | + | - | (+/−) | (+/−) | 0 | 0 | + | 0 |
3 M HCl | - | + | - | - | 0 | 0 | 0 | + |
0.1 M thiourea in 0.5 M HCl | N/A | N/A | N/A | N/A | - | - | - | - |
HCl Concentration in the Feed, M | Percentage Stripping, % | |||
---|---|---|---|---|
Eh4IA-PrCl | D3EI-PrCl | |||
3 M HNO3 | 3 M HCl | 0.1 M Ammonia | ||
Pt(IV) | Pd(II) | Pt(IV) | Pd(II) | |
0.1 | 11.8 | 18.6 | 15.5 | 94.6 |
1.0 | 6.3 | 31.5 | 29.8 | 89.8 |
3.0 | 4.5 | 46.0 | 40.2 | 85.9 |
Extractant Concentration, M | EPt(IV), % | EPd(II), % | DPt(IV) | DPd(II) | SFPt(IV)/Pd(II) |
---|---|---|---|---|---|
Eh3MI-PrCl | |||||
0.03 | 98.61 | 96.06 | 71.0 | 24.4 | 2.91 |
0.02 | 96.91 | 87.91 | 31.3 | 7.30 | 4.31 |
0.01 | 89.91 | 47.87 | 8.90 | 0.90 | 9.70 |
Eh4IA-PrCl | |||||
0.03 | 98.73 | 99.90 | 77.7 | 963 | 0.08 |
0.02 | 98.82 | 99.37 | 83.7 | 158 | 0.53 |
0.01 | 84.12 | 56.56 | 5.30 | 1.30 | 4.07 |
D3EI-PrCl | |||||
0.03 | 99.14 | 100.00 | 115 | 1.4 × 105 | 0.00 |
0.02 | 98.88 | 100.00 | 88.6 | 1.4 × 105 | 0.00 |
0.01 | 97.83 | 100.00 | 45.0 | 1.4 × 105 | 0.00 |
D3MI-PrCl | |||||
0.03 | 98.63 | 100.00 | 72.1 | 1.4 × 105 | 0.00 |
0.02 | 98.22 | 100.00 | 55.2 | 1.4 × 105 | 0.00 |
0.01 | 98.80 | 100.00 | 82.4 | 1.4 × 105 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiecka, Z.; Rzelewska-Piekut, M.; Wojciechowska, I.; Wieszczycka, K.; Regel-Rosocka, M. Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems. Materials 2021, 14, 285. https://doi.org/10.3390/ma14020285
Wiecka Z, Rzelewska-Piekut M, Wojciechowska I, Wieszczycka K, Regel-Rosocka M. Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems. Materials. 2021; 14(2):285. https://doi.org/10.3390/ma14020285
Chicago/Turabian StyleWiecka, Zuzanna, Martyna Rzelewska-Piekut, Irmina Wojciechowska, Karolina Wieszczycka, and Magdalena Regel-Rosocka. 2021. "Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems" Materials 14, no. 2: 285. https://doi.org/10.3390/ma14020285
APA StyleWiecka, Z., Rzelewska-Piekut, M., Wojciechowska, I., Wieszczycka, K., & Regel-Rosocka, M. (2021). Recovery of Palladium(II) and Platinum(IV) in Novel Extraction Systems. Materials, 14(2), 285. https://doi.org/10.3390/ma14020285