Initial Stage Carbonization of γ-Fe(100) Surface in C2H2 under High Temperature: A Molecular Dynamic Simulation
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Initial Stage of Carbonization Process
3.2. Structure of Carbonized Layer
3.3. Effect of Preset Polycrystal on Initial Carbonization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Melnykov, M.; Davidchack, R.L. Characterization of melting properties of several Fe-C model potentials. Comput. Mater. Sci. 2018, 144, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Natesan, K.; Maroni, V. Investigation of metal-dusting mechanism in Fe-base alloys using Raman spectroscopy, X-ray diffraction, and electron microscopy. Oxid. Met. 2002, 58, 147–170. [Google Scholar] [CrossRef]
- Young, D.; Zhang, J.; Geers, C.; Schütze, M. Recent advances in understanding metal dusting: A review. Mater. Corros. 2011, 62, 7–28. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, Z.; Tian, S.; Chen, X. Effect of oxidation on crack propagation of Si nanofilm: A ReaxFF molecular dynamics simulation study. Appl. Surf. Sci. 2019, 480, 1100–1108. [Google Scholar] [CrossRef]
- Sun, Y.; Zhai, Z.; Qiao, B.; Tian, S.; Chen, X. Crack propagation of Si nanofilm accompanied by initial stage of wet oxidation. Appl. Surf. Sci. 2020, 505, 144200. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; He, Z.; Qiao, B.; Chen, X. Role of initial stage nitridation on the mechanical properties of an α-Fe(100) nanofilm in NH3. Phys. Chem. Chem. Phys. 2021, 23, 4856–4864. [Google Scholar] [CrossRef]
- Evteev, A.V.; Levchenko, E.V.; Belova, I.V.; Murch, G.E. Kinetic and molecular dynamics analysis of carbon diffusion in austenite. Philos. Mag. 2007, 87, 4335–4357. [Google Scholar] [CrossRef]
- Tapasa, K.; Barashev, A.V.; Bacon, D.J.; Osetsky, Y.N. Computer simulation of carbon diffusion and vacancy–carbon interaction in α-iron. Acta Mater. 2007, 55, 1–11. [Google Scholar] [CrossRef]
- Narulkar, R.; Bukkapatnam, S.; Raff, L.; Komanduri, R. Molecular dynamics simulations of diffusion of carbon into iron. Philos. Mag. 2008, 88, 1259–1275. [Google Scholar] [CrossRef]
- Levchenko, E.V.; Evteev, A.; Belova, I.; Murch, G.E. Molecular dynamics simulation and theoretical analysis of carbon diffusion in cementite. Acta Mater. 2009, 57, 846–853. [Google Scholar] [CrossRef]
- Timmerscheidt, T.A.; von Appen, J.; Dronskowski, R. A molecular-dynamics study on carbon diffusion in face-centered cubic iron. Comput. Mater. Sci. 2014, 91, 235–239. [Google Scholar] [CrossRef]
- Barouh, C.; Schuler, T.; Fu, C.-C.; Nastar, M. Interaction between vacancies and interstitial solutes (C, N, and O) in α− Fe: From electronic structure to thermodynamics. Phys. Rev. B 2014, 90, 054112. [Google Scholar] [CrossRef]
- Jang, J.-W.; Lee, B.-J.; Hong, J.-H. Influence of Cu, Cr and C on the irradiation defect in Fe: A molecular dynamics simulation study. J. Nucl. Mater. 2008, 373, 28–38. [Google Scholar] [CrossRef]
- Tapasa, K.; Barashev, A.; Bacon, D.; Osetsky, Y. Computer simulation of the interaction of carbon atoms with self-interstitial clusters in α-iron. J. Nucl. Mater. 2007, 361, 52–61. [Google Scholar] [CrossRef]
- Tapasa, K.; Osetsky, Y.N.; Bacon, D. Computer simulation of interaction of an edge dislocation with a carbon interstitial in α-iron and effects on glide. Acta Mater. 2007, 55, 93–104. [Google Scholar] [CrossRef]
- Candela, R.; Musseau, N.; Veiga, R.G.A.; Domain, C.; Becquart, C. Interaction between interstitial carbon atoms and a ½<1 1 1> self-interstitial atoms loop in an iron matrix: A combined DFT, off lattice KMC and MD study. J. Phys. Condens. Matter 2018, 30, 335901. [Google Scholar]
- Khater, H.; Monnet, G.; Terentyev, D.; Serra, A. Dislocation glide in Fe–carbon solid solution: From atomistic to continuum level description. Int. J. Plast. 2014, 62, 34–49. [Google Scholar] [CrossRef]
- Hristova, E.; Janisch, R.; Drautz, R.; Hartmaier, A. Solubility of carbon in α-iron under volumetric strain and close to the Σ5 (3 1 0)[0 0 1] grain boundary: Comparison of DFT and empirical potential methods. Comput. Mater. Sci. 2011, 50, 1088–1096. [Google Scholar] [CrossRef]
- Xie, R.; Lu, S.; Li, W.; Tian, Y.; Vitos, L. Dissociated dislocation-mediated carbon transport and diffusion in austenitic iron. Acta Mater. 2020, 191, 43–50. [Google Scholar] [CrossRef]
- Sun, Z.-P.; Zhang, J.-Y.; Dai, F.-Z.; Xu, B.; Zhang, W.-Z. A molecular dynamics study on formation of the self-accommodation microstructure during phase transformation. J. Mater. Sci. Technol. 2019, 35, 2638–2646. [Google Scholar] [CrossRef]
- Meiser, J.; Urbassek, H.M. Ferrite-to-Austenite and Austenite-to-Martensite Phase Transformations in the Vicinity of a Cementite Particle: A Molecular Dynamics Approach. Metals 2018, 8, 837. [Google Scholar] [CrossRef] [Green Version]
- Karewar, S.; Sietsma, J.; Santofimia, M.J. Effect of C on the Martensitic Transformation in Fe-C Alloys in the Presence of Pre-Existing Defects: A Molecular Dynamics Study. Crystals 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Dan, W.; Zhang, W. The strain-induced martensitic phase transformation of Fe–C alloys considering C addition: A molecular dynamics study. J. Mater. Res. 2020, 35, 1803–1816. [Google Scholar] [CrossRef]
- Wang, B.; Sak-Saracino, E.; Gunkelmann, N.; Urbassek, H.M. Molecular-dynamics study of the α↔γ phase transition in Fe–C. Comput. Mater. Sci. 2014, 82, 399–404. [Google Scholar] [CrossRef]
- Zhou, X.; Foster, M.E.; Ronevich, J.A.; Marchi, C.W.S. Review and construction of interatomic potentials for molecular dynamics studies of hydrogen embrittlement in Fe-C based steels. J. Comput. Chem. 2020, 41, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Dan, W.; Zhang, W. Effects of hydrogen on the deformation mechanism of face-centred cubic Fe–C single crystal with nanovoid: A molecular dynamics simulation. J. Alloy. Compd. 2021, 870, 159330. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Chen, X.; Zhai, Z.; Xu, F.; Liu, Y. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study. Appl. Surf. Sci. 2017, 406, 178–185. [Google Scholar] [CrossRef]
- Kim, B.-H.; Pamungkas, M.A.; Park, M.; Kim, G.; Lee, K.-R.; Chung, Y.-C. Stress evolution during the oxidation of silicon nanowires in the sub-10 nm diameter regime. Appl. Phys. Lett. 2011, 99, 143115. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, Y.; Chen, X.; Zhai, Z.; Izumi, S. Thermal-mechanical coupling effect on initial stage oxidation of Si(100) surface. J. Appl. Phys. 2018, 123, 135104. [Google Scholar] [CrossRef]
- Barin, I.; Platzki, G. Thermochemical Data of Pure Substances; VCH: New York, NY, USA, 1989; Volume 304. [Google Scholar]
- Simmons, G.; Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties; Southern Methodist University Dallas Tex: Dallas, TX, USA, 1971. [Google Scholar]
- Yan, J.-A.; Wang, C.-Y.; Wang, S.-Y. Generalized-stacking-fault energy and dislocation properties in bcc Fe: A first-principles study. Phys. Rev. B 2004, 70, 174105. [Google Scholar] [CrossRef]
- Li, W.; Lu, S.; Hu, Q.-M.; Johansson, B.; Kwon, S.K.; Grehk, M.; Johnsson, J.Y.; Vitos, L. Generalized stacking fault energy of γ-Fe. Philos. Mag. 2016, 96, 524–541. [Google Scholar] [CrossRef]
- Yu, J.; Lin, X.; Wang, J.; Chen, J.; Huang, W. First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces. Appl. Surf. Sci. 2009, 255, 9032–9039. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T. Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? J. Phys. Chem. C 2011, 115, 24839–24848. [Google Scholar] [CrossRef]
- Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. On the c-Si|a-SiO2 interface in hyperthermal Si oxidation at room temperature. J. Phys. Chem. C 2012, 116, 21856–21863. [Google Scholar] [CrossRef]
- Yagodzinskyy, Y.; Todoshchenko, O.; Papula, S.; Hänninen, H. Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy. Steel Res. Int. 2011, 82, 20–25. [Google Scholar] [CrossRef]
- Malitckii, E.; Yagodzinskyy, Y.; Vilaҫa, P. Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high-strength steels. Mater. Sci. Eng. A 2019, 760, 68–75. [Google Scholar] [CrossRef]
- Escobar, D.P.; Depover, T.; Wallert, E.; Duprez, L.; Verhaege, M.; Verbeken, K. Thermal desorption spectroscopy study of the interaction between hydrogen and different microstructural constituents in lab cast Fe–C alloys. Corros. Sci. 2012, 65, 199–208. [Google Scholar] [CrossRef]
- Westmoreland, P.; Dean, A.M.; Howard, J.B.; Longwell, J.P. Forming benzene in flames by chemically activated isomerization. J. Phys. Chem. 1989, 93, 8171–8180. [Google Scholar] [CrossRef]
- Wesendrup, R.; Schwarz, H. Catalytic benzene formation in the gas-phase reactions of MC4H4+ (M = Ru, Rh) with C2H2. Organometallics 1997, 16, 461–466. [Google Scholar] [CrossRef]
- Lu, K.; Huo, C.-F.; He, Y.; Yin, J.; Liu, J.; Peng, Q.; Guo, W.-P.; Yang, Y.; Li, Y.-W.; Wen, X.-D. Grain boundary plays a key role in carbon diffusion in carbon irons revealed by a ReaxFF study. J. Phys. Chem. C 2018, 122, 23191–23199. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, L.; Wang, H.; He, Z.; Yang, L.; Chen, X. Initial Stage Carbonization of γ-Fe(100) Surface in C2H2 under High Temperature: A Molecular Dynamic Simulation. Materials 2021, 14, 5957. https://doi.org/10.3390/ma14205957
Sun Y, Wang L, Wang H, He Z, Yang L, Chen X. Initial Stage Carbonization of γ-Fe(100) Surface in C2H2 under High Temperature: A Molecular Dynamic Simulation. Materials. 2021; 14(20):5957. https://doi.org/10.3390/ma14205957
Chicago/Turabian StyleSun, Yu, Ling Wang, Hao Wang, Ziqiang He, Laihao Yang, and Xuefeng Chen. 2021. "Initial Stage Carbonization of γ-Fe(100) Surface in C2H2 under High Temperature: A Molecular Dynamic Simulation" Materials 14, no. 20: 5957. https://doi.org/10.3390/ma14205957
APA StyleSun, Y., Wang, L., Wang, H., He, Z., Yang, L., & Chen, X. (2021). Initial Stage Carbonization of γ-Fe(100) Surface in C2H2 under High Temperature: A Molecular Dynamic Simulation. Materials, 14(20), 5957. https://doi.org/10.3390/ma14205957