The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Prepration
2.3. Gelation Time Measurement with Standard-Basedmethod
2.4. Thermal Derivative Analysis Measurement
2.5. Gel Time Determination from ATD
3. Results and Discussion
3.1. ATD vs. Standard-Based Method
3.2. Gelation Time Measurement with ATD
- (1)
- Catalytic surface action of carbon additives. Both active groups on the surface of fibers and graphite, formed in pyrolysis processes, and molecules (mainly oxygen) adsorbed on the surface of the additives are responsible for the effect. Catalytic effects of various types of carbon additives on polymer matrices are described, inter alia, in works [45,46,47]. Catalytic reactions of fillers are also often occurring in case of phosphoric flame retardants [48,49]. The catalytic effect stimulates accelerating the resin cross-linking process. It should result in an increase in peak temperature and a shortening of gelation time.
- (2)
- Local heat absorption from the area surrounding the particle (or fiber). It results from the very good thermal conductivity of graphite and carbon fibers (which is mostly also made of graphite) and the relatively high heat capacity of such particles or fibers. This effect inhibits the resin cross-linking process. It should result in lowering peak temperature and extending gelation time.
4. Conclusions
- Temperature vs. time relation for resin curing process reflects the second-order phase transition, and specific changes within this relation may be characterized by 1st derivative;
- The Analysis of Temperature Derivative is a valid tool for determination of resin’s gelation time;
- The proposed method can be easily adapted into automatic measurement procedures with high resolution;
- The addition of graphite particles or milled carbon fibers to resins significantly and ambiguously affects gelation time and peak temperature of curing process in most of tested samples; and
- Increasing the number of chemically active groups involved in the reactions of the cross-linking process—including epoxy groups—probably causes a more inhibitory effect of carbon additives (graphite particles of milled carbon fibers). This effect should be further and more widely investigated to confirm it.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pielichowski, J.; Czub, P.; Penczek, P.; Bończa-Tomaszewski, Z. Chemia i Technologia Żywic Epoksydowych; WNT: Warszawa, Poland, 2016. [Google Scholar]
- Oleksy, M.; Szwarc-Rzepka, K.; Heneczkowski, M.; Oliwa, R.; Jesionowski, T. Epoxy Resin Composite Based on Functional Hybrid Fillers. Materials 2014, 7, 6064–6091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bréchet, Y.; Cavaillé, J.Y.; Chabert, E.; Chazeau, L.; Dendievel, R.; Flandin, L.; Gauthier, C. Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions. Adv. Eng. Mater. 2001, 3, 571–577. [Google Scholar] [CrossRef]
- Chatys, R. Investigation of the effect of distribution of the static strength on the fatigue failure of a layered composite by using the markov chain theory. Mech. Compos. Mater. 2013, 48, 629–638. [Google Scholar] [CrossRef]
- Chatys, R.; Kleinhofs, M.; Panich, A.; Miśków, G. Composite Laminates for Automotive Bumpers and Lightweight Support Structures. In Proceedings of the 24th International Conference “Engineering Mechanics”, Svratka, Czech Republic, 14–17 May 2018; pp. 145–148. [Google Scholar]
- Huang, H.-X.; Zhang, J.-J. Effects of filler-filler and polymer-filler interactions on rheological and mechanical properties of HDPE-wood composites. J. Appl. Polym. Sci. 2009, 111, 2806–2812. [Google Scholar] [CrossRef]
- Chabert, E.; Bornert, M.; Bourgeat-Lami, E.; Cavaillé, J.Y.; Dendievel, R.; Gauthier, C.; Putaux, J.L.; Zaoui, A. Filler–filler interactions and viscoelastic behavior of polymer nanocomposites. Mater. Sci. Eng. A 2004, 381, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Bailly, M.; Kontopoulou, M.; El Mabrouk, K. Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites. Polymer 2010, 51, 5506–5515. [Google Scholar] [CrossRef]
- Leziona, J. Podstawy Technologii Kompozytów; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 1998. [Google Scholar]
- Boczkowska, A.; Krzesiński, G. Kompozyty i Techniki ich Wytwarzania; Wydawnictwo Politechniki Warszawskiej: Warszawa, Poland, 2016. [Google Scholar]
- Shimkin, A.A. Methods for the determination of the gel time of polymer resins and prepregs. Russ. J. Gen. Chem. 2016, 86, 1488–1493. [Google Scholar] [CrossRef]
- ASTM D 2471–99: Standard Test Method for Gel Time and Peak Exothermic Temperature of Reacting Thermosetting Resins; ASTM International: West Conshohocken, PA, USA, 1999.
- IPC-TM-650 2. 3.18 Gel Time for Prepreg Materials; IPC International (IPC): Bannockburn, IL, USA, 1986. [Google Scholar]
- DOTD TR 703–85: Gel Time Determination of Epoxy Resin Systems. Available online: http://www.dotd.la.gov/Inside_LaDOTD/Divisions/Engineering/Materials_Lab/TPM_Vol_II_Part_VII/703.pdf (accessed on 18 August 2021).
- DIN EN ISO 2535:2003-02, Plastics—Unsaturated Polyester Resins—Measurement of Gel Time at Ambient Temperature; German Institute for Standardisation: Berlin, Germany, 2003.
- ISO 9396:1997 Plastics—Phenolic Resins—Determination of the Gel Time of Resols under Specific Conditions Using Automatic Apparatus; ISO: Geneva, Switzerland, 1997.
- ASTM D3532/D3532M Standard Test Method for Gel Time of Carbon Fiber-Epoxy Prepreg; ASTM International: West Conshohocken, PA, USA, 2019.
- DIN 16945 Testing of Resins, Hardeners and Accelerators, and Catalyzed Resins; Deutsches Institut für Normung: Berlin, Germany, 1989.
- Laza, J.; Julian, C.; Larrauri, E.; Rodriguez, M.; Leon, L. Thermal scanning rheometer analysis of curing kinetic of an epoxy resin: 2. An amine as curing agent. Polymer 1999, 40, 35–45. [Google Scholar] [CrossRef]
- Núñez-Regueira, L.; Gracia-Fernández, C.A.; Gómez-Barreiro, S. Use of rheology, dielectric analysis and differential scan-ning calorimetry for gel time determination of a thermoset. Polymer 2005, 46, 5979–5985. [Google Scholar] [CrossRef]
- ASTM D4473—03Standard Test Method for Plastics: Dynamic Mechanical Properties: Cure Behavior; ASTM International: West Conshohocken, PA, USA, 2003.
- Beheshti, M.H.; Nasiri, H.; Vafaian, M. Gel time and exotherm behaviour studies of an unsaturated polyester resin initiated and promoted with dual systems. Iran. Polym. J. 2005, 14, 990–999. [Google Scholar]
- Stark, W. Investigation of the curing behaviour of carbon fibre epoxy prepreg by Dynamic Mechanical Analysis DMA. Polym. Test. 2013, 32, 231–239. [Google Scholar] [CrossRef]
- Vassilikou-Dova, A.; Kalogeras, I.M. Thermal Analysis of Polymers: Fundamentals and Applications; Menczel, J.D., Prime, R.B., Eds.; Wiley: Hoboken, NJ, USA, 2009; pp. 497–614. [Google Scholar]
- Varley, R.J.; Hodgkin, J.H.; Hawthorne, D.G.; Simon, G.P. Toughening of a trifunctional epoxy system. II. Thermal characterization of epoxy/amine cure. J. Appl. Polym. Sci. 1996, 60, 2251–2263. [Google Scholar] [CrossRef]
- Gao, J.; Li, L.; Deng, Y.; Gao, Z.; Xu, C.; Zhang, M. Study of gelation using differential scanning calorimetry (DSC). J. Therm. Anal. Calorim. 1997, 49, 303–310. [Google Scholar] [CrossRef]
- Restrepo-Zapata, N.C.; Osswald, T.A.; Hernández-Ortiz, J.P. Method for time–temperature–transformation diagrams using DSC data: Linseed aliphatic epoxy resin. J. Appl. Polym. Sci. 2014, 131, 40566. [Google Scholar] [CrossRef]
- Acitelli, M.; Prime, R.; Sacher, E. Kinetics of epoxy cure: (1) The system bisphenol-A diglycidyl ether/m-phenylene diamine. Polymer 1971, 12, 335–343. [Google Scholar] [CrossRef]
- Lionetto, F.; Maffezzoli, A. Monitoring the Cure State of Thermosetting Resins by Ultrasound. Materials 2013, 6, 3783–3804. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.; Sun, Z.; Deitzel, J.; Tanoglu, M.; Heider, D. Cure kinetics of vapor grown carbon nanofiber (VGCNF) modified epoxy resin suspensions and fracture toughness of their resulting nanocomposites. Mater. Chem. Phys. 2009, 118, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Chatys, R.; Piernik, K. Influence pf speed of resin injection under pressure into mould on strength properties of polymer composite. Compos. Theory Pract. 2021, 21, 40–45. [Google Scholar]
- Koziol, M.; Mocek, P.; Jankowski, P. Effect of the specimen volume of chemosetting polyester resin on the curing process. Polimery 2016, 61, 133–141. [Google Scholar] [CrossRef]
- Kozioł, M. Nasycanie Ciśnieniowo-Próżniowe Zszywanych oraz Tkanych Trójwymiarowo Preform z Włókna Szklanego; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2016. [Google Scholar]
- Kozioł, M.; Gradoń, P. Effect of glass fibre presence on curing process of unsaturated polyester resin. Compos. Theory Pract. 2018, 18, 191–195. [Google Scholar]
- Lou, J.; Zhang, J.; Xu, S.; Wang, D.; Fan, X. New Method to Evaluate the Crosslinking Degree of Resin Finishing Agent with Cellulose Using Kjeldahl Method and Arrhenius Formula. Processes 2021, 9, 767. [Google Scholar] [CrossRef]
- Tcharkhtchi, A.; Nony, F.; Khelladi, S.; Fitoussi, J.; Farzaneh, S. Epoxy/amine reactive systems for composites materials and their thermomechanical properties. In Advances in Composites Manufacturing and Process Design; Woodhead Publishing: Kingstown, UK, 2015; pp. 269–296. [Google Scholar]
- Jones, P.; Boontheung, C.; Hundt, G. Employing an Arrhenius Rate Law to Predict the Lifetime of Oilfield Resins. In Proceedings of the SPE International Conference on Oilfield Chemistry, Montgomery, TX, USA, 5 April 2017. [Google Scholar] [CrossRef]
- Alonso, M.V.; Oliet, M.; García, J.; Rodríguez, F.; Echeverría, J. Transformation of dynamic DSC results into isothermal data for the curing kinetics study of the resol resins. J. Therm. Anal. Calorim. 2006, 86, 797–802. [Google Scholar] [CrossRef]
- Abraham, S.; Bodnar, R.; Lonnqvist, J.; Shahbazian, F.; Lagerstedt, A.; Andersson, M. Investigation of Peritectic Behavior of Steel Using a Thermal Analysis Technique. Met. Mater. Trans. A 2019, 50, 2259–2271. [Google Scholar] [CrossRef]
- Tuttle, R. Comparison of Rare Earth Refinement in 4130 and HY100. Metals 2021, 11, 540. [Google Scholar] [CrossRef]
- Binczyk, F.; Cwajna, J.; Gradoń, P.; Sozańska, M.; Cieśla, M. Metallurgical Quality of Feed Ingots and Castings Made from Nickel and Cobalt Superalloys. Solid State Phenom. 2013, 212, 215–220. [Google Scholar] [CrossRef]
- Migas, D.; Gradoń, P.; Mikuszewski, T.; Moskal, G. Crystallization behavior of ternary γ–γ′ Co–Al–W alloy. J. Therm. Anal. Calorim. 2020, 142, 1739–1747. [Google Scholar] [CrossRef]
- PPUH Z-TECH Zbigniew Jura. Available online: http://www.zjura.sownet.pl/z-tech/crystaldigraph.php (accessed on 6 July 2021).
- Rouwhorst, J.; Ness, C.; Stoyanov, S.; Zaccone, A.; Schall, P. Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Acocella, M.R.; Corcione, C.E.; Giuri, A.; Maggio, M.; Maffezzoli, A.; Guerra, G. Graphene oxide as a catalyst for ring opening reactions in amine crosslinking of epoxy resins. RSC Adv. 2016, 6, 23858–23865. [Google Scholar] [CrossRef]
- Corcione, C.E.; Acocella, M.R.; Giuri, A.; Maffezzoli, A.; Guerra, G. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller. AIP Conf. Proc. 2015, 1695, 020046. [Google Scholar] [CrossRef]
- Corcione, C.E.; Acocella, M.R.; Giuri, A.; Maffezzoli, A. Epoxy Resin Catalyzed by Graphite-Based Nanofillers. Int. Polym. Process. 2016, 31, 548–553. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Huo, S.; Zhou, Z.; Jiang, J.; Sai, T.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based poly-phosphonamide. Chem. Eng. J. 2022, 427, 131578. [Google Scholar] [CrossRef]
- Epoxy and Polyester Resins, Hardeners and Gelcoats. Available online: https://www.havel-composites.com/en/categories/epoxy-and-polyester-resins--hardeners-and-gelcoats-363 (accessed on 24 September 2021).
- Grupa Ciech, S.A. Zakłady Organika Sarzyna. In Katalog Żywice Epoksydowe i Utwardzacze Żywic Epoksydowych (Manufacturer’s Catalog); Katalog EPIDIaN: Nowa Sarzyna, Poland, 2019; Available online: https://ciechresins.com/files/katalogi/EPIDIAN_CATALOG_PL_PAGE_BY_PAGE.pdf (accessed on 8 October 2021).
Sample Name | Epoxy Resin | Hardener | Weight Ratio (g) |
---|---|---|---|
LH 145 | LH 145 1 | H 135 1 | 100:35 |
LH 160 | LH 160 1 | H 135 1 | 100:35 |
LH 289 | LH 289 1 | H 135 1 | 100:35 |
Ep450 | Epidian® 450 2 | Z-1 2 | 100:8.4 |
Ep505 | Epidian® 505 2 | Z-1 2 | 100:10 |
Ep601 | Epidian® 601 2 | Z-1 2 | 100:12.6 |
Ep624 | Epidian® 624 2 | Z-1 2 | 100:11.8 |
Ep653 | Epidian® 653 2 | Z-1 2 | 100:12.3 |
LAM125 | LAM-125 3 | LAM-226 3 | 100:30 |
AM36 | Ampreg™ 36 4 | Ampreg™ 3X Fast 4 | 100:29 |
L80 | C-L L80 5 | LH 55 5 | 100:30 |
Sample | Standard Method (min) | ATD Method (min) |
---|---|---|
LH 145 | 28 | 31 |
LH 160 | 34 | 36.3 |
LH 289 | 30.5 | 32.8 |
Ep653 | 39.5 | 42.1 |
Ep505 | 59 | 61.8 |
L80 | 75 | 77.3 |
Ep450 | 27 | 30.2 |
Ep601 | 36.5 | 40.8 |
Ep624 | 42 | 46.7 |
LAM125 | 62 | 67.6 |
AM36 | 24 | 26.2 |
Ep450+G | 21.5 | 30.1 |
L80+CF | 57 | 61.2 |
Sample | Tmax (°C) | τgel (min) |
---|---|---|
LH 145 | 218.5 | 31.0 |
LH 145+G | 205.2 | 33.8 |
LH 145+CF | 202.1 | 32.2 |
LH 160 | 197.8 | 36.3 |
LH 160+G | 175.3 | 36.6 |
LH 160+CF | 191.3 | 33.9 |
LH 289 | 211.0 | 32.8 |
LH 289+G | 163.9 | 41.1 |
LH 289+CF | 194.6 | 34.0 |
Ep450 | 85.6 | 30.2 |
Ep450+G | 102.5 | 30.1 |
Ep450+CF | 156.6 | 21.9 |
Ep505 | 120.7 | 61.8 |
Ep505+G | 114.2 | 62.1 |
Ep505+CF | 126.6 | 55.2 |
Ep601 | 213.4 | 40.8 |
Ep601+G | 210.3 | 42.7 |
Ep601+CF | 211.7 | 39.1 |
Ep624 | 208.3 | 46.7 |
Ep624+G | 170.2 | 43.0 |
Ep624+CF | 193.0 | 49.3 |
Ep653 | 201.8 | 42.1 |
Ep653+G | 184.0 | 40.7 |
Ep653+CF | 205.7 | 43.9 |
LAM125 | 191.3 | 67.6 |
LAM125+G | 159.8 | 61.2 |
LAM125+CF | 177.5 | 58.3 |
AM36 | 188.5 | 26.2 |
AM36+G | 196.3 | 24.9 |
AM36+CF | 228.3 | 25.7 |
L80 | 174.1 | 77.3 |
L80+G | 147.9 | 73.5 |
L80+CF | 172.5 | 61.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smoleń, J.; Olesik, P.; Gradoń, P.; Chudy, M.; Mendala, B.; Kozioł, M. The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins. Materials 2021, 14, 6022. https://doi.org/10.3390/ma14206022
Smoleń J, Olesik P, Gradoń P, Chudy M, Mendala B, Kozioł M. The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins. Materials. 2021; 14(20):6022. https://doi.org/10.3390/ma14206022
Chicago/Turabian StyleSmoleń, Jakub, Piotr Olesik, Paweł Gradoń, Mateusz Chudy, Bogusław Mendala, and Mateusz Kozioł. 2021. "The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins" Materials 14, no. 20: 6022. https://doi.org/10.3390/ma14206022
APA StyleSmoleń, J., Olesik, P., Gradoń, P., Chudy, M., Mendala, B., & Kozioł, M. (2021). The Use of the ATD Technique to Measure the Gelation Time of Epoxy Resins. Materials, 14(20), 6022. https://doi.org/10.3390/ma14206022