Dialkyl Succinates and Adipates as Alternative Plasticizers—Even More Efficient Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis
2.4. Esterification Procedure
2.5. Recycling Study
3. Results
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wypych, G. Handbook of Plasticizers, 3rd ed.; ChemTec Publishing: Toronto, ON, Canada, 2004; pp. 591–613. [Google Scholar]
- Bui, T.T.; Giovanoulis, G.; Cousins, A.P.; Magnér, J.; Cousins, I.T.; Wit, C.A. Human exposure, hazard and risk of alternative plasticizers to phthalate esters. Sci. Total Environ. 2016, 541, 451–467. [Google Scholar] [CrossRef]
- Jamarani, R.; Erythropel, H.C.; Nicell, J.A.; Leask, R.L.; Marić, M. How green is your plasticizer? Polymers 2018, 10, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazitova, A.K.; Aminova, G.K.; Vikhareva, I.N. Designing of green plasticizers and assessment of the effectiveness of their use. Polymers 2021, 13, 1761. [Google Scholar] [CrossRef]
- Stuart, A.; Fan, D.; McCallum, M.M.; Mohanty, D. Poly(vinyl chloride) plasticized with succinate esters: Synthesis and characterization. Polym. Bull. 2010, 65, 589–598. [Google Scholar] [CrossRef]
- Chaudhary, B.I.; Nguyen, B.; Smith, P.; Sunday, N.; Luong, M.; Zamanskiy, A. Synthesis and properties of a bio-based PVC plasticizer derived from lactic acid. Polym. Eng. Sci. 2015, 55, 634–640. [Google Scholar] [CrossRef]
- Iwata, H.; Shimada, K. Formulas, Ingredients and Production of Cosmetics; Springer: Tokyo, Japan, 2013; p. 181. [Google Scholar]
- Zeikus, J.G.; Jain, M.K.; Elankovan, P. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 1999, 51, 545–552. [Google Scholar] [CrossRef]
- Li, K.-T.; Wang, C.-Y. Succinic acid esterification on mixed oxides with titanium. Chem. Eng. Commun. 2016, 203, 1641–1647. [Google Scholar] [CrossRef]
- Reinecke, H.; Navarro, R.; Pérez, M. Plasticizers. In Encyclopedia of Polymer Science and Technology; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Chiellini, F.; Ferri, M.; Morelli, A.; Dipaola, L.; Latini, G. Perspectives on alternatives to phthalate plasticized poly(vinyl chloride) in medical devices applications. Prog. Polym. Sci. 2013, 38, 1067–1088. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.-W.; Tsai, Y.-T.; Lin, H.-M.; Lee, M.-J. Esterification of adipic acid with methanol over Amberlyst 35. J. Taiwan Inst. Chem. Eng. 2010, 41, 414–420. [Google Scholar] [CrossRef]
- Hočevar, B.; Prašnikar, A.; Huš, M.; Grilc, M.; Likozar, B. H2-free re-based catalytic dehydroxylation of aldaric acid to muconic and adipic acid esters. Angew. Chem. Int. Ed. 2021, 60, 1244–1253. [Google Scholar] [CrossRef]
- Arpe, H.J. Industrial Organic Chemistry, 5th ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Yuan, B.; Wang, Y.; Wang, M.; Gou, G.; Li, L. Metal organic frameworks as recyclable catalysts for efficient esterification to synthesize traditional plasticizers. Appl. Catal. A Gen. 2021, 622, 118212–118220. [Google Scholar] [CrossRef]
- Jing, C.; Jinhua, L.; Zhongxie, D.; Yuehua, W.; Zhen, L.; Min, J.; Xiaoqian, R. Lewis acid sites of Mg2+-modified polystyrene sulfonic acid resin catalysys for synthesis of dibutyl succinate. Quim. Nova 2018, 41, 613–618. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.; Choi, N.; Kim, B.H.; Oh, S.-W.; Kim, I.-H. Synthesis of diethylhexyl adipate by Candida antarctica lipase-catalyzed esterification. Process Biochem. 2019, 78, 58–62. [Google Scholar] [CrossRef]
- Ji, X.; Chen, Y.; Shen, Z. Nano-SO42−/TiO2 catalyzed eco-friendly esterification of dicarboxylic acids. Asian J. Chem. 2014, 26, 5769–5772. [Google Scholar] [CrossRef]
- Ding, B.; Xue, L.; Miao, N. Preparation of dibutyl succinate using acid activated bentonite as catalyst. China Surfactant Deterg. Cosmet. 2006, 5, 337–340. [Google Scholar]
- Amarasekara, A.S. Acidic ionic liquids. Chem. Rev. 2016, 116, 6133–6183. [Google Scholar] [CrossRef]
- Dong, B.; Song, H.; Zhang, W.; He, A.; Yao, S. Ionic liquids as heterogeneous and homogeneous catalysts for condensation and esterification reactions. Curr. Org. Chem. 2016, 20, 2894–2910. [Google Scholar] [CrossRef]
- Estager, J.; Oliferenko, A.A.; Seddona, K.R.; Swadźba-Kwaśny, M. Chlorometallate(iii) ionic liquids as Lewis acidic catalysts ca quantitative study of acceptor properties. Dalton Trans. 2010, 39, 11375–11382. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, M.; Xu, W.; Angell, C.A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and 395 the relevance of ΔpKa from aqueous solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419. [Google Scholar] [CrossRef]
- Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem. 2018, 22, 533–556. [Google Scholar] [CrossRef]
- Vafaeezadeh, M.; Alinezhad, H. Brönsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq. 2016, 218, 95–105. [Google Scholar] [CrossRef]
- Chiappe, C.; Rajamania, S.; D’Andreab, F. A dramatic effect of the ionic liquid structure in esterification reactions in protic ionic media. Green Chem. 2013, 15, 137–143. [Google Scholar] [CrossRef]
- Chen, L.; Sharifzadeh, M.; Dowell, N.M.; Welton, T.; Shah, N.; Hallett, J.P. Inexpensive ionic liquids: [HSO4]−-based solvent production at bulk scale. Green Chem. 2014, 16, 3098–3106. [Google Scholar] [CrossRef] [Green Version]
- Matuszek, K.; Chrobok, A.; Coleman, F.; Seddon, K.R.; Swadźba-Kwaśny, M. Tailoring ionic liquid catalysts: Structure, acidity and catalytic activity of protonic ionic liquids based on anionic clusters, [(HSO4)(H2SO4)x]− (x = 0, 1, or 2). Green Chem. 2014, 16, 3463–3471. [Google Scholar] [CrossRef]
- Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum Press: New York, NY, USA, 1978; p. 595. [Google Scholar] [CrossRef]
- Przypis, M.; Matuszek, K.; Chrobok, A.; Swadźba-Kwaśny, M.; Gillner, D. Inexpensive and tuneable protic ionic liquids based on sulfuric acid for the biphasic synthesis of alkyl levulinates. J. Mol. Liq. 2020, 308, 113166–113173. [Google Scholar] [CrossRef]
- Grymel, A.; Latos, P.; Matuszek, K.; Erfurt, K.; Barteczko, N.; Pankalla, E.; Chrobok, A. Sustainable method for the synthesis of alternative Bis(2-Ethylhexyl) terephthalate plasticizer in the presence of protic ionic liquids. Catalysts 2020, 10, 457. [Google Scholar] [CrossRef]
- Dorosz, U.; Barteczko, N.; Latos, P.; Erfurt, K.; Pankalla, E.; Chrobok, A. Highly efficient biphasic system for the synthesis of alkyl lactates in the presence of acidic ionic liquids. Catalysts 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Matuszek, K.; Brzęczek-Szafran, A.; Kobus, D.; MacFarlane, D.R.; Swadźba-Kwaśny, M.; Chrobok, A. Protic ionic liquids based on oligomeric anions [(HSO4)(H2SO4)x]− (x = 0, 1, or 2) for a clean ϵ-caprolactam synthesis. Aust. J. Chem. 2019, 72, 130–138. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barteczko, N.; Więcławik, J.; Tracz, A.; Pankalla, E.; Erfurt, K.; Latos, P.; Boncel, S.; Matuszek, K.; Chrobok, A. Dialkyl Succinates and Adipates as Alternative Plasticizers—Even More Efficient Synthesis. Materials 2021, 14, 6219. https://doi.org/10.3390/ma14206219
Barteczko N, Więcławik J, Tracz A, Pankalla E, Erfurt K, Latos P, Boncel S, Matuszek K, Chrobok A. Dialkyl Succinates and Adipates as Alternative Plasticizers—Even More Efficient Synthesis. Materials. 2021; 14(20):6219. https://doi.org/10.3390/ma14206219
Chicago/Turabian StyleBarteczko, Natalia, Justyna Więcławik, Anna Tracz, Ewa Pankalla, Karol Erfurt, Piotr Latos, Sławomir Boncel, Karolina Matuszek, and Anna Chrobok. 2021. "Dialkyl Succinates and Adipates as Alternative Plasticizers—Even More Efficient Synthesis" Materials 14, no. 20: 6219. https://doi.org/10.3390/ma14206219
APA StyleBarteczko, N., Więcławik, J., Tracz, A., Pankalla, E., Erfurt, K., Latos, P., Boncel, S., Matuszek, K., & Chrobok, A. (2021). Dialkyl Succinates and Adipates as Alternative Plasticizers—Even More Efficient Synthesis. Materials, 14(20), 6219. https://doi.org/10.3390/ma14206219