New and Recovered Temporary Anchorage Devices, In Vitro Assessment of Structural and Surface Properties
Abstract
:1. Introduction
- Implant head: serves as an element for the positioning of orthodontic accessories;
- Transmucosal neck;
- Implant body: the part embedded inside the bone.
2. Materials and Methods
- Electrochemical Investigations
- Scanning Electron Microscopy Investigation (SEM)
- Microbiological Analysis
3. Results
3.1. Electrochemical Evaluation
3.2. Scanning Electron Microscopy (SEM) Investigation
3.3. Microbiological Analysis
4. Discussion
4.1. Electrochemical Evaluation
4.2. Scanning Electron Microscopy (SEM) Investigation
4.3. Microbiological Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gainsforth, B.L.; Higley, L.B. A study of orthodontic anchorage possibilities in basal bone. Am. J. Orthod. Oral Surg. 1945, 31, 406–417. [Google Scholar] [CrossRef]
- Kanomi, R. Mini-implant for orthodontic anchorage. J. Clin. Orthod. 1997, 31, 763–767. [Google Scholar]
- Herman, R.; Cope, J. Temporary anchorage devices in orthodontics: Mini implants. Semin. Orthod. 2005, 11, 32–39. [Google Scholar] [CrossRef]
- Tsui, W.K.; Chua, H.D.P.; Cheung, L.K. Bone anchor systems for orthodontic application: A systematic review. Int. J. Oral Maxillofac. Surg. 2012, 41, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Takaki, T.; Tamura, N.; Yamamoto, M.; Takano, N.; Shibahara, T.; Yasumura, T.; Nishii, Y.; Sueishi, K. Clinical study of temporary anchorage devices for orthodontic treatment. Stability of micro, mini-screws and mini-plates. Experience with 455 cases. Bull. Tokyo Dent. Coll. 2010, 11, 151–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topouzelis, N.; Tsaousoglou, P. Clinical factors correlated with the success rate of miniscrews in orthodontic treatment. Int. J. Oral Sci. 2012, 4, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, M.A.; Tarawneh, F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: A comprehensive review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 103, e6–e15. [Google Scholar] [CrossRef]
- Papageorgiou, S.N.; Zogakis, I.P.; Papadopoulos, M.A. Failure rates and associated risk factors of orthodontic miniscrew implants: A metaanalysis. Am. J. Orthod. Dentofac. Orthop. 2012, 11, 577–595. [Google Scholar] [CrossRef]
- Sbordone, L.; Traini, T.; Caputi, S.; Scarano, A.; Bortolaia, C.; Piattelli, A. Scanning electron microscopy fractography analysis of fractured hollow implants. J. Oral Implantol. 2010, 36, 105–111. [Google Scholar] [CrossRef]
- Eliades, T.; Zinelis, S.; Papadopoulos, M.A.; Eliades, G. Characterization of retrieved orthodontic miniscrew implants. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 1–7. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K. Release of metal ions from orthodontic appliances by in vitro studies: A systematic literature review. Biol. Trace Elem. Res. 2011, 139, 241–256. [Google Scholar] [CrossRef]
- Jabbari, Y.S.A.; Fournelle, R.A.; Zinelis, S.; Iacopino, A.M. Biotribological behavior of two retrieved implant abutment screws after long-term use in vivo. Int. J. Oral Maxillofac. Implant. 2012, 27, 1474–1480. [Google Scholar]
- Mattos, C.T.; de Ruellas, A.C.O.; Elias, C.N. Is it possible to re-use mini-implants for orthodontic anchorage? Results of an in vitro study. Mater. Res. 2010, 13, 521–525. [Google Scholar] [CrossRef] [Green Version]
- Sebbar, M.; Bourzgui, F.; Aazzab, B.; Elquars, F. Anchorage miniscrews: A surface characterization study using optical microscopy. Int. Orthod. 2011, 9, 325–338. [Google Scholar] [CrossRef]
- Patil, P.; Kharbanda, O.P.; Duggal, R.; Das, T.K.; Kalyanasundaram, D. Surface deterioration and elemental composition of retrieved orthodontic miniscrews. Am. J. Orthod. Dentofac. Orthop. 2015, 147, S88–S100. [Google Scholar] [CrossRef]
- Knop, L.A.H.; Soares, A.P.; Shintcovsk, R.L.; Martins, L.P.; Gandini, L.G., Jr. Characterization of surface topography and chemical composition of mini-implants. Braz. J. Oral Sci. 2015, 14, 251–255. [Google Scholar] [CrossRef]
- Suzuki, M.; Deguchi, T.; Watanabe, H.; Seiryu, M.; Iikubo, M.; Sasano, T.; Fujiyama, K.; Takano-Yamamotoh, T. Evaluation of optimal length and insertion torque for miniscrews. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 251–259. [Google Scholar] [CrossRef]
- Lucchese, A.; Manuelli, M.; Bassani, L.; Albertini, P.; Matarese, G.; Perillo, L.; Gastaldi, G.; Gherlone, E.F. Fiber reinforced composites orthodontic retainers. Minerva Stomatol. 2015, 64, 323–333. [Google Scholar]
- Burgers, R.; Gerlach, T.; Hahnel, S.; Schwarz, F.; Handel, G.; Gosau, M. In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin. Oral Implant. Res. 2010, 21, 156–164. [Google Scholar] [CrossRef]
- Daokar, S.M.T.; Daokar, S.G. Implants in Orthodontics. Int. J. Oral Maxillofac. Implant. 2015, 6, 17–19. [Google Scholar] [CrossRef]
- Malkoc, S.; Ozturk, F.; Corekci, B.; Bozkurt, B.S.; Hakki, S.S. Real-time cell analysis of the cytotoxicity of orthodontic mini-implants on human gingival fibroblasts and mouse osteoblasts. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 419–426. [Google Scholar] [CrossRef]
- Yun, S.D.; Choi, S.H.; Cha, J.Y.; Yu, H.S.; Kim, K.M.; Kim, J.; Hwang, C.J. Effects of recycling on the biomechanical characteristics of retrieved orthodontic miniscrews. Korean J. Orthod. 2017, 47, 238–247. [Google Scholar] [CrossRef]
- Danaei, S.M.; Safavi, A.; Roeinpeikar, S.M.; Oshagh, M.; Iranpour, S.; Omidekhoda, M. Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2012, 139, 730–734. [Google Scholar] [CrossRef]
- Natarajan, M.; Padmanahban, S.; Chitharanjan, A.; Narasimhan, M. Evaluation of the genotoxic effects of fixed appliances on oral mucosal cells and the relationship to nickel and chromium concentrations: An in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 383–388. [Google Scholar] [CrossRef]
- Liou, J.W.; Chang, H.H. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. 2012, 60, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Acar, Y.B.; Hergel, C.A.; Ates, M.B.; Kucukkeles, N. Mini-implant usage in orthodontic practice. Turk. J. Orthod. 2015, 28, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hergel, C.A.; Acar, Y.B.; Ates, M.; Kucukkeles, N. In-vitro evaluation of the effects of insertion and sterilization procedures on the mechanical and surface characteristics of mini screws. Eur. Oral Res. 2019, 53, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Morais, L.S.; Serra, G.G.; Muller, C.A.; Andrade, L.R.; Palermo, E.F.; Elias, C.N.; Meyers, M. Titanium alloy mini-implants for orthodontic anchorage: Immediate loading and metal ion release. Acta Biomater. 2007, 3, 331–339. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chang, H.H.; Lin, H.Y.; Lai, E.H.H.; Hung, H.C. Stability of miniplates and miniscrews used for orthodontic anchorage: Experience with 492 temporary anchorage devices. Clin. Oral Implant. Res. 2008, 19, 1188–1196. [Google Scholar] [CrossRef]
- Manazza, F.; La Rocca, S.; Nagni, M.; Chirico, L.; Cattoni, F. A simplified digital workflow for the prosthetic finishing of implant rehabilitations: A case report. J. Biol. Regul. Homeost. Agents 2021, 35, 87–97. [Google Scholar]
- Cappare, P.; Tete, G.; Sberna, M.T.; Panina-Bordignon, P. The Emerging Role of Stem Cells in Regenerative Dentistry. Curr. Gene Ther. 2020, 20, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, S.; Koyama, I.; Inoue, M.; Mishima, K.; Sugahara, T.; Takano-Yamamoto, T. Factors associated with the stability of the titanium screws placed in the posterior region for orthodontic anchorage. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 373–378. [Google Scholar] [CrossRef]
- Espinar-Escalona, E.; Bravo-Gonzalez, L.A.; Pegueroles, M.; Gil, F.J. Roughness and wettability effect on histologi-cal and mechanical response of self-drilling orthodontic mini-implants. Clin. Oral Investig. 2016, 20, 1115–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zogheib, T.; Walter-Solana, A.; de la Iglesia, F.; Espinar, E.; Gil, J.; Puigdollers, A. Do Titanium Mini-Implants Have the Same Quality of Finishing and Degree of Contamination before and after Different Manipulations? An In Vitro Study. Metals 2021, 11, 245. [Google Scholar] [CrossRef]
- Jing, Z.; Wu, Y.; Jiang, W.; Zhao, L.; Jing, D.; Zhang, N.; Cao, X.; Xu, Z.; Zhao, Z. Factors Affecting the Clinical Success Rate of Miniscrew Implants for Orthodontic Treatment. Int. J. Oral Maxillofac. Implant. 2016, 31, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Petrey, J.S.; Saunders, M.M.; Kluemper, G.T.; Cunningham, L.L.; Beeman, C.S. Temporary anchorage device insertion variables: Effects on retention. Angle Orthod. 2010, 80, 446–453. [Google Scholar] [CrossRef]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implant. Res. 2006, 17, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Apel, S.; Apel, C.; Morea, C.; Tortamano, A.; Dominguez, G.C.; Conrad, G. Microflora associated with successful and failed orthodontic mini-implants. Clin. Oral Implant. Res. 2009, 20, 1186–1190. [Google Scholar] [CrossRef]
- Hagg, U.; Kaveewatcharanont, P.; Samaranayake, Y.H.; Samaranayake, L.P. The effect of fixed orthodontic appliances on the oral carriage of Candida species and enterobacteriaceae. Eur. J. Orthod. 2004, 26, 623–629. [Google Scholar] [CrossRef]
- Sukontapatipark, W.; El-Agroudi, M.A.; Selliseth, N.J.; Thunold, K.; Selving, K.A. Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy Study. Eur. J. Orthod. 2001, 23, 475–484. [Google Scholar] [CrossRef]
- de Freitas, A.O.A.; Alviano, C.S.; Alviano, D.S.; Siqueira, J.F., Jr.; Nojima, L.I.; da Nojima, M.C.G. Microbial colonization in orthodontic mini-implants. Braz. Dent. J. 2012, 23, 422–427. [Google Scholar] [CrossRef]
- Kuroda, S.; Tanaka, E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn. Dent. Sci. Rev. 2014, 50, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Redzepagic-Vrazalica, L.; Mesic, E.; Pervan, N.; Hadziabdic, V.; Delic, M.; Glusac, M. Impact of Implant Design and Bone Properties on the Primary Stability of Orthodontic Mini-Implants. Appl. Sci. 2021, 11, 1183. [Google Scholar] [CrossRef]
- Chunga, C.J.; Jung, K.Y.; Choic, Y.J.; Kim, K.H. Biomechanical characteristics and reinsertion guidelines for retrieved orthodontic miniscrews. Angle Orthod. 2014, 84, 878–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, C.; Gil, F.J.; Fonseca, C.; Barbosa, M.; Planell, J.A. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dent. Mater. 2007, 23, 486–491. [Google Scholar]
- Bohinc, K.; Drazic, G.; Abram, A.; Jevsnik, M.; Jersek, B.; Nipic, D.; Kurincic, M.; Raspor, P. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 2016, 68, 39–46. [Google Scholar] [CrossRef]
- Boulane-Petermann, L. Processes of bioadhesion on stainless steel surfaces and cleanability: A review with special reference to the food industry. Biofouling 1996, 10, 275–300. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.O.; Andrucioli, M.C.D.; Nelson-Filho, P.; Zanella, E.P.; Consolaro, A.; Romano, F.L.; Matsumoto, M.A.N. Bacterial biofilm on successful and failed orthodontic mini-implants-a scanning electron microscopy study. Microsc. Res. Tech. 2015, 78, 1112–1116. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiman, P.A.; Prodan, D.; Moldovan, M.; Muntean, A.; Sarosi, C.; Tarmure, V.; Baciut, G.; Popa, C.; Pop, A.S. New and Recovered Temporary Anchorage Devices, In Vitro Assessment of Structural and Surface Properties. Materials 2021, 14, 6271. https://doi.org/10.3390/ma14216271
Jiman PA, Prodan D, Moldovan M, Muntean A, Sarosi C, Tarmure V, Baciut G, Popa C, Pop AS. New and Recovered Temporary Anchorage Devices, In Vitro Assessment of Structural and Surface Properties. Materials. 2021; 14(21):6271. https://doi.org/10.3390/ma14216271
Chicago/Turabian StyleJiman, Paula Argentina, Doina Prodan, Marioara Moldovan, Alexandrina Muntean, Codruta Sarosi, Viorica Tarmure, Grigore Baciut, Catalin Popa, and Andreea Simona Pop. 2021. "New and Recovered Temporary Anchorage Devices, In Vitro Assessment of Structural and Surface Properties" Materials 14, no. 21: 6271. https://doi.org/10.3390/ma14216271
APA StyleJiman, P. A., Prodan, D., Moldovan, M., Muntean, A., Sarosi, C., Tarmure, V., Baciut, G., Popa, C., & Pop, A. S. (2021). New and Recovered Temporary Anchorage Devices, In Vitro Assessment of Structural and Surface Properties. Materials, 14(21), 6271. https://doi.org/10.3390/ma14216271