Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, X.; Lee, W.-S.; Imada, M.; Trivedi, N.; Phillips, P.; Kee, H.-Y.; Törmä, P.; Eremets, M. High-temperature superconductivity. Nat. Rev. Phys. 2021, 3, 462–465. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based Layered Superconductor La[O1-xFx]FeAs (x = 0.05 − 0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Haindl, S. Thin Film Growth of Fe-Based Superconductors. In Iron-Based Superconducting Thin Films; Springer International Publishing: Cham, Switzerland, 2021; pp. 27–148. [Google Scholar]
- Cai, Y.; Huang, J.; Miao, T.; Wu, D.; Gao, Q.; Li, C.; Xu, Y.; Jia, J.; Wang, Q.; Huang, Y.; et al. Genuine electronic structure and superconducting gap structure in (Ba0.6K0.4)Fe2As2 superconductor. Sci. Bull. 2021, 66, 1839–1848. [Google Scholar] [CrossRef]
- Mukasa, K.; Matsuura, K.; Qiu, M.; Saito, M.; Sugimura, Y.; Ishida, K.; Otani, M.; Onishi, Y.; Mizukami, Y.; Hashimoto, K.; et al. High-pressure phase diagrams of FeSe1−xTex: Correlation between suppressed nematicity and enhanced superconductivity. Nat. Commun. 2021, 12, 381. [Google Scholar] [CrossRef]
- Yeh, K.-W.; Huang, T.-W.; Huang, Y.-L.; Chen, T.-K.; Hsu, F.-C.; Wu, P.M.; Lee, Y.-C.; Chu, Y.-Y.; Chen, C.-L.; Luo, J.-Y.; et al. Tellurium Substitution Effect on Superconductivity of the α-phase Iron Selenide. EPL 2008, 84, 37002. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.A.; Curtis, J.L.; Di Giorgio, C.; Lechner, E.; Abdel-Hafiez, M.; Volkova, O.S.; Vasiliev, A.N.; Chareev, D.A.; Karapetrov, G.; Iavarone, M. Evolution of the superconducting properties in FeSe1-xSx. Phys. Rev. B 2015, 92, 235113. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Lan, F.; Qiu, W.; Ma, Z.; Li, H.; Liu, Y. The fabrication of high-quality superconducting FeSe1−xSx films via pulsed laser deposition. Supercond. Sci. Technol. 2020, 33, 035001. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 2010, 82, 180520. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.F.; Ying, J.J.; Yan, Y.J.; Liu, R.H.; Luo, X.G.; Li, Z.Y.; Wang, X.F.; Zhang, M.; Ye, G.J.; Cheng, P.; et al. Superconductivity at 32 K in single-crystalline RbxFe2-ySe2. Phys. Rev. B 2011, 83, 060512. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, Y.; Tomioka, F.; Tsuda, S.; Yamaguchi, T.; Takano, Y. Superconductivity at 27K in Tetragonal FeSe Under High Pressure. Appl. Phys. Lett. 2008, 93, 152505. [Google Scholar] [CrossRef]
- Bendele, M.; Ichsanow, A.; Pashkevich, Y.; Keller, L.; Strässle, T.; Gusev, A.; Pomjakushina, E.; Conder, K.; Khasanov, R.; Keller, H. Coexistence of superconductivity and magnetism in FeSe1-x under pressure. Phys. Rev. B 2012, 85, 064517. [Google Scholar] [CrossRef] [Green Version]
- Lei, B.; Cui, J.H.; Xiang, Z.J.; Shang, C.; Wang, N.Z.; Ye, G.J.; Luo, X.G.; Wu, T.; Sun, Z.; Chen, X.H. Evolution of High-Temperature Superconductivity from a Low-Tc Phase Tuned by Carrier Concentration in FeSe Thin Flakes. Phys. Rev. Lett. 2016, 116, 077002. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Z.; Zhang, W.; Zhang, Z.; Zhang, J.; Li, W.; Ding, H.; Ou, Y.; Deng, P.; Chang, K.; et al. Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.F.; Zhang, H.; Liu, D.; Liu, C.; Tang, C.; Song, C.; Zhong, Y.; Peng, J.; Li, F.; Nie, C.; et al. Topological Edge States in a High-temperature Superconductor FeSe/SrTiO3(001) Film. Nat. Mater. 2016, 15, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Liu, Z.; Liu, C.; Gao, C.; Qian, D.; Xue, Q.-K.; Liu, Y.; Jia, J. Superconductivity Above 100 K in Single-layer FeSe Films on Doped SrTiO3. Nat. Mater. 2015, 14, 285–289. [Google Scholar] [CrossRef]
- He, S.; He, J.; Zhang, W.; Zhao, L.; Liu, D.; Liu, X.; Mou, D.; Ou, Y.-B.; Wang, Q.-Y.; Li, Z.; et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 2013, 12, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Feng, Z.-P.; Huang, J.-W.; Hu, Y.; Gao, Q.; Li, C.; Yu, X.; Liu, G.-D.; Yu, L.; Zhao, L.; et al. Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method. Chin. Phys. B 2017, 26, 077402. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Zhang, Y.; Xia, M.; Ye, Z.; Chen, F.; Xie, X.; Peng, R.; Xu, D.; Fan, Q.; Xu, H.; et al. Interface-induced Superconductivity and Strain-dependent Spin Density Waves in FeSe/SrTiO3 Thin Films. Nat. Mater. 2013, 12, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, Y.; Nakayama, K.; Sugawara, K.; Sato, T.; Takahashi, T. High-temperature Superconductivity in Potassium-coated Multilayer FeSe Thin Films. Nat. Mater. 2015, 14, 775–779. [Google Scholar] [CrossRef]
- Shiogai, J.; Ito, Y.; Mitsuhashi, T.; Nojima, T.; Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 2016, 12, 42–46. [Google Scholar] [CrossRef]
- Phan, G.N.; Nakayama, K.; Kanayama, S.; Kuno, M.; Sugawara, K.; Sato, T.; Takahashi, T. High-Temperature Superconductivity and Lattice Relaxation in Lithium-Deposited FeSe on SrTiO3. J. Phys. Soc. Jpn. 2017, 86, 033706. [Google Scholar] [CrossRef]
- Sun, J.P.; Ye, G.Z.; Shahi, P.; Yan, J.Q.; Matsuura, K.; Kontani, H.; Zhang, G.M.; Zhou, Q.; Sales, B.C.; Shibauchi, T.; et al. High-Tc Superconductivity in FeSe at High Pressure: Dominant Hole Carriers and Enhanced Spin Fluctuations. Phys. Rev. Lett. 2017, 118, 147004. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Ma, Z.; Liu, Y.; Hossain, M.S.A.; Wang, X.; Cai, C.; Dou, S.X. Tuning Superconductivity in FeSe Thin Films via Magnesium Doping. ACS Appl. Mater. Interfaces 2016, 8, 7891–7896. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Ma, Z.; Patel, D.; Sang, L.; Cai, C.; Shahriar Al Hossain, M.; Cheng, Z.; Wang, X.; Dou, S.X. The Interface Structure of FeSe Thin Film on CaF2 Substrate and its Influence on the Superconducting Performance. ACS Appl. Mater. Interfaces 2017, 9, 37446–37453. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Ma, Z.; Liu, Y.; Chen, N.; Cai, Q.; Li, H.; Barua, S.; Patel, D.; Hossain, M.S.A.; Kim, J.H.; et al. The formation of nano-layered grains and their enhanced superconducting transition temperature in Mg-doped FeSe0.9 bulks. Sci. Rep. 2014, 4, 6481. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.K.; Chang, C.C.; Chang, H.H.; Fang, A.H.; Wang, C.H.; Chao, W.H.; Tseng, C.M.; Lee, Y.C.; Wu, Y.R.; Wen, M.H.; et al. Fe-vacancy order and superconductivity in tetragonal beta-Fe1-xSe. Proc. Natl. Acad. Sci. USA 2014, 111, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Nabeshima, F.; Kawai, M.; Ishikawa, T.; Shikama, N.; Maeda, A. Systematic study on transport properties of FeSe thin films with various degrees of strain. Jpn. J. Appl. Phys. 2018, 57, 120314. [Google Scholar] [CrossRef]
- Phan, G.N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; et al. Effects of strain on the electronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2017, 95, 224507. [Google Scholar] [CrossRef] [Green Version]
- Maeda, A.; Nabeshima, F.; Takahashi, H.; Okada, T.; Imai, Y.; Tsukada, I.; Hanawa, M.; Komiya, S.; Ichinose, A. Synthesis, characterization, Hall effect and THz conductivity of epitaxial thin films of Fe chalcogenide superconductors. Appl. Surf. Sci. 2014, 312, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R.; Zaitsev, A.G.; Fuchs, D.; Löhneysen, H.V. Superconductor-insulator quantum phase transition in disordered FeSe thin films. Phys. Rev. Lett. 2012, 108, 257003. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Ma, Q.; Ma, Z.; Tang, J.; Sang, L.; Cai, C.; Hossain, M.S.A.; Cheng, Z.; Wang, X.; Liu, Y.; et al. Enhanced superconductivity induced by several-unit-cells diffusion in an FeTe/FeSe bilayer heterostructure. Phys. Rev. B 2019, 99, 064502. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Y.; Zhang, W.H.; Zhang, Z.C.; Sun, Y.; Xing, Y.; Wang, Y.Y.; Wang, L.L.; Ma, X.C.; Xue, Q.K.; Wang, J. Thickness dependence of superconductivity and superconductor–insulator transition in ultrathin FeSe films on SrTiO3 (001) substrate. 2D Mater. 2015, 2, 044012. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, Z.; Li, F.; Zhang, H.; Peng, J.; Tang, C.; Wang, Q.; He, K.; Chen, X.; Wang, L.; et al. Interface Charge Doping Effects on Superconductivity of Single-unit-cell FeSe Films on SrTiO3 Substrates. Phys. Rev. B 2014, 89, 060506. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Pyon, S.; Tamegai, T. Electron carriers with possible Dirac-cone-like dispersion in FeSe1-xSx (x = 0 and 0.14) single crystals triggered by structural transition. Phys. Rev. B 2016, 93, 104502. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Zhang, H.; Zhong, Y.; Hu, X.; Ji, S.; Wang, L.; He, K.; Ma, X.; Xue, Q.-K. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films. Phys. Rev. Lett. 2016, 116, 157001. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Liu, C.; Zhou, G.; Li, F.; Ding, H.; Li, Z.; Zhang, D.; Li, Z.; Song, C.; Ji, S.; et al. Interface-enhanced Electron-phonon Coupling and High-temperature Superconductivity in Potassium-coated Ultrathin FeSe Films on SrTiO3. Phys. Rev. B 2016, 93, 020507. [Google Scholar] [CrossRef] [Green Version]
- Egerton, R.F. Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed.; Springer: Boston, MA, USA, 2011; pp. 433–491. [Google Scholar]
- Taftø, J.; Krivanek, O.L. Site-Specific Valence Determination by Electron Energy-Loss Spectroscopy. Phys. Rev. Lett. 1982, 48, 560–563. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Chen, L.; Cheng, Z.; Qiu, W. Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process. Materials 2021, 14, 6383. https://doi.org/10.3390/ma14216383
Cao Z, Chen L, Cheng Z, Qiu W. Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process. Materials. 2021; 14(21):6383. https://doi.org/10.3390/ma14216383
Chicago/Turabian StyleCao, Zhiqiang, Longqing Chen, Zhenxiang Cheng, and Wenbin Qiu. 2021. "Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process" Materials 14, no. 21: 6383. https://doi.org/10.3390/ma14216383
APA StyleCao, Z., Chen, L., Cheng, Z., & Qiu, W. (2021). Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process. Materials, 14(21), 6383. https://doi.org/10.3390/ma14216383