Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Activated Fly Ash
3.2. Setting Time Results
3.3. Compressive Strength Results
3.4. Water Absorbtion and Bulk Density Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Watts, J. Concrete: The most destructive material on earth. Guardian 2019, 25, 1–9. [Google Scholar]
- Siddique, R.; Khan, M.I. Supplementary Cementing Materials; Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2011; Volume 37, ISBN 978-3-642-17865-8. [Google Scholar]
- Kurdowski, W. Cement and Concrete Chemistry; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-7944-0. [Google Scholar]
- Bielecka, A.; Kulczycka, J. Coal combustion products management toward a circular economy—A case study of the coal power plant sector in Poland. Energies 2020, 13, 3603. [Google Scholar] [CrossRef]
- Harris, D.; Heidrich, C.; Feuerborn, J. Global aspects on coal combustion products. In Proceedings of the World of Coal Ash (WOCA), St. Louis, MO, USA, 13–16 May 2019. [Google Scholar]
- Domańska, W. Environment 2019; Statistics Poland: Warsaw, Poland, 2019.
- Jarosz-Krzemińska, E.; Poluszyńska, J. Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment. Energies 2020, 13, 4805. [Google Scholar] [CrossRef]
- Energy 2019; Statistics Poland: Warsaw, Poland, 2019.
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The elemental composition of biomass ashes as a preliminary assessment of the recovery potential. Gospod. Surowcami Miner. Miner. Resour. Manag. 2018, 34, 115–132. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Grate-Fired Biomass Combustion Plants Using Forest Residues as Fuel: Enrichment Factors for Components in the Fly Ash. Waste Biomass Valorization 2017, 8, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Ohenoja, K.; Pesonen, J.; Yliniemi, J.; Illikainen, M. Utilization of Fly Ashes from Fluidized Bed Combustion: A Review. Sustainability 2020, 12, 2988. [Google Scholar] [CrossRef] [Green Version]
- Giergiczny, Z. Fly ash and slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- EN 450-1:2012, Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria; European Committee for Standardization: Brussels, Belgium, 2012.
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Azam, M.; Jahromy, S.S.; Raza, W.; Wesenauer, F.; Schwendtner, K.; Winter, F. Comparison of the characteristics of fly ash generated from bio and municipal waste: Fluidized bed incinerators. Materials 2019, 12, 2664. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Esteves, T.C.; Rajamma, R.; Soares, D.; Silva, A.S.; Ferreira, V.M.; Labrincha, J.A. Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars. Constr. Build. Mater. 2012, 26, 687–693. [Google Scholar] [CrossRef]
- Grau, F.; Choo, H.; Hu, J.W.; Jung, J. Engineering behavior and characteristics of wood ash and sugarcane bagasse ash. Materials 2015, 8, 6962–6977. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, B.; Stańczak, D.; Tarańska, J.; Jaworski, J. The influence of cement substitution by biomass fly ash on the polymer–cement composites properties. Materials 2021, 14, 3079. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Yusta, M.; Mármol, I.; Morales, J.; Sánchez, L. Use of olive biomass fly ash in the preparation of environmentally friendly mortars. Environ. Sci. Technol. 2011, 45, 6991–6996. [Google Scholar] [CrossRef] [PubMed]
- Rajamma, R.; Senff, L.; Ribeiro, M.J.; Labrincha, J.A.; Ball, R.J.; Allen, G.C.; Ferreira, V.M. Biomass fly ash effect on fresh and hardened state properties of cement based materials. Compos. Part B Eng. 2015, 77, 291–303. [Google Scholar] [CrossRef]
- Wang, S. Quantitative kinetics of pozzolanic reactions in coal/cofired biomass fly ashes and calcium hydroxide (CH) mortars. Constr. Build. Mater. 2014, 51, 364–371. [Google Scholar] [CrossRef]
- Fořt, J.; Šál, J.; Ševčík, R.; Doleželová, M.; Keppert, M.; Jerman, M.; Záleská, M.; Stehel, V.; Černý, R. Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects. Constr. Build. Mater. 2021, 271, 121544. [Google Scholar] [CrossRef]
- Cheah, C.B.; Ramli, M. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resour. Conserv. Recycl. 2011, 55, 669–685. [Google Scholar] [CrossRef]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Miller, A.; Llamazos, E.; Fonseca, F.; Baxter, L. Biomass fly ash in concrete: Mixture proportioning and mechanical properties. Fuel 2008, 87, 365–371. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of wood ash in concrete manufacturing. Resour. Conserv. Recycl. 2012, 67, 27–33. [Google Scholar] [CrossRef]
- Elinwa, A.U.; Ejeh, S.P.; Mamuda, A.M. Assessing of the fresh concrete properties of self-compacting concrete containing sawdust ash. Constr. Build. Mater. 2008, 22, 1178–1182. [Google Scholar] [CrossRef]
- Naik, T.; Kraus, R.N.; Siddique, R. Demonstration of Manufacturing Technology for Concrete and CLSM Utilizing Wood Ash from Wisconsino; Department of Civil Engineering and Mechanics: Milwaukee, WI, USA, 2002. [Google Scholar]
- Udoeyo, F.F.; Inyang, H.; Young, D.T.; Oparadu, E.E. Potential of Wood Waste Ash as an Additive in Concrete. J. Mater. Civ. Eng. 2006, 18, 605–611. [Google Scholar] [CrossRef]
- Ghorpade, V.G. Effect of wood waste ash on the strength characteristics of concrete. Nat. Environ. Pollut. Technol. 2012, 11, 121–124. [Google Scholar]
- Wilińska, I.; Pacewska, B. Influence of selected activating methods on hydration processes of mixtures containing high and very high amount of fly ash. J. Therm. Anal. Calorim. 2018, 133, 823–843. [Google Scholar] [CrossRef] [Green Version]
- Rajczyk, K.; Szota, M. Methods of improvement of calcareous fly ash. Cem. Lime Concr. 2012, 17, 415–422. [Google Scholar]
- Wilińska, I.; Pacewska, B.; Ostrowski, A. Investigation of different ways of activation of fly ash–cement mixtures: Part 1. Chemical activation by Na2SO4 and Ca(OH)2. J. Therm. Anal. Calorim. 2019, 138, 4203–4213. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Da, Y.; Xu, R.; Yang, R. Effect of multiple chemical activators on mechanical property of high replacement high calcium fly ash blended system. Constr. Build. Mater. 2019, 198, 537–545. [Google Scholar] [CrossRef]
- Popławski, J.; Lelusz, M. Utility assessment of biomass fly-ash for production of concrete products. Tech. Trans. 2017, 8, 129–142. [Google Scholar] [CrossRef]
- Popławski, J.; Lelusz, M. Wpływ popiołu lotnego ze spalania biomasy i pyłu węglowego na wybrane właściwości kompozytów o matrycy cementowej. Constr. Optim. Energy Potential 2018, 7, 89–94. [Google Scholar] [CrossRef]
- Popławski, J.; Lelusz, M. Influence of Biomass Fly-Ash and Asphalt Emulsion on Properties of Cement Composites—A statistical study. In Proceedings of the AIP Conference Proceedings, Jora Wielka, Poland, 16–19 October 2018; Volume 2078. [Google Scholar]
- EN 197-1:2011, Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; European Committee for Standardization: Brussels, Belgium, 2011.
- EN 13263-1:2005+A1:2009, Silica Fume for Concrete—Part 1: Definitions, Requirements and Conformity Criteria; European Committee for Standardization: Brussels, Belgium, 2009.
- EN 196-1:2016, Methods of Testing Cement—Part 1: Determination of Strength; European Committee for Standardization: Brussels, Belgium, 2016.
- PN-B-04500:1985, Zaprawy Budowlane—Badania Cech Fizycznych i Wytrzymałościowych; Polish Committee for Standardization: Warsaw, Poland, 1985.
- EN 196-3:2016, Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness; European Committee for Standardization: Brussels, Belgium, 2016.
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Illikainen, M.; Tanskanen, P.; Kinnunen, P.; Körkkö, M.; Peltosaari, O.; Wigren, V.; Österbacka, J.; Talling, B.; Niinimäki, J. Reactivity and self-hardening of fly ash from the fluidized bed combustion of wood and peat. Fuel 2014, 135, 69–75. [Google Scholar] [CrossRef]
- Ohenoja, K.; Tanskanen, P.; Wigren, V.; Kinnunen, P.; Körkkö, M.; Peltosaari, O.; Österbacka, J.; Illikainen, M. Self-hardening of fly ashes from a bubbling fluidized bed combustion of peat, forest industry residuals, and wastes. Fuel 2016, 165, 440–446. [Google Scholar] [CrossRef]
Oxide | Silica Fume | Biomass Fly Ash |
---|---|---|
SiO2 | 90.9 | 9.6 |
Al2O3 | 0.0 | 2.4 |
P2O5 | 0.2 | 0.0 |
K2O | 2.6 | 14.7 |
CaO | 0.8 | 56.1 |
MnO | 0.6 | 3.1 |
Fe2O3 | 4.5 | 7.9 |
CuO | 0.1 | 0.0 |
ZnO | 0.2 | 0.5 |
As2O3 | 0.1 | 0.0 |
SO3 | 0.0 | 4.3 |
TiO2 | 0.0 | 0.6 |
Cl | 0.0 | 0.7 |
BaO | 0.0 | 0.1 |
Property | Biomass Fly Ash | EN 450-1 Requirements |
---|---|---|
Fineness | 66.4% | ≤40% (N category) |
Loss on ignition | 8.0% | ≤9% (C category) |
Strength activity index after 28 days | 65.1% | ≥75% |
Strength activity index after 90 days | 66.9% | ≥85% |
Property | Silica Fume |
---|---|
Specific surface | 15–35 m2/g |
Loss on ignition | <4.0% |
Bulk density | <350 kg/m3 |
Material | >2.0 mm | 2.0–1.0 mm | 1.0–0.5 mm | 0.50–0.25 mm | 0.250–0.125 mm | 0.125–0.063 mm | 0.063–0.045 mm | 0.045–0.000 mm |
---|---|---|---|---|---|---|---|---|
Biomass fly ash | 0.0 | 0.0 | 0.0 | 0.3 | 12.0 | 18.7 | 7.2 | 61.8 |
Series Code | Silica Fume | Biomass Fly Ash | Cement | Sand | Water | ||
---|---|---|---|---|---|---|---|
Untreated | Sieved | Ground | |||||
FA(B)N sf/(sf + fa) = 0.0 | 0.0 | 112.5 | 0.0 | 0.0 | 337.5 | 1350 | 225 |
FA(B)N sf/(sf + fa) = 0.2 | 22.5 | 90.0 | 0.0 | 0.0 | 337.5 | 1350 | 225 |
FA(B)N sf/(sf + fa) = 0.4 | 45.0 | 67.5 | 0.0 | 0.0 | 337.5 | 1350 | 225 |
FA(B)S sf/(sf + fa) = 0.0 | 0.0 | 0.0 | 112.5 | 0.0 | 337.5 | 1350 | 225 |
FA(B)S sf/(sf + fa) = 0.2 | 22.5 | 0.0 | 90.0 | 0.0 | 337.5 | 1350 | 225 |
FA(B)S sf/(sf + fa) = 0.4 | 45.0 | 0.0 | 67.5 | 0.0 | 337.5 | 1350 | 225 |
FA(B)G sf/(sf + fa) = 0.0 | 0.0 | 0.0 | 0.0 | 112.5 | 337.5 | 1350 | 225 |
FA(B)G sf/(sf + fa) = 0.2 | 22.5 | 0.0 | 0.0 | 90.0 | 337.5 | 1350 | 225 |
FA(B)G sf/(sf + fa) = 0.4 | 45.0 | 0.0 | 0.0 | 67.5 | 337.5 | 1350 | 225 |
K | 0.0 | 0.0 | 0.0 | 0.0 | 450.0 | 1350 | 225 |
Series Code | Silica Fume | Biomass Fly Ash | Cement | Water | ||
---|---|---|---|---|---|---|
Untreated | Sieved | Ground | ||||
FA(B)N sf/(sf + fa) = 0.0 | 0 | 125 | 0 | 0 | 375 | 160.0 |
FA(B)N sf/(sf + fa) = 0.2 | 25 | 100 | 0 | 0 | 375 | 175.0 |
FA(B)N sf/(sf + fa) = 0.4 | 50 | 75 | 0 | 0 | 375 | 185.0 |
FA(B)S sf/(sf + fa) = 0.0 | 0 | 0 | 125 | 0 | 375 | 178.0 |
FA(B)S sf/(sf + fa) = 0.2 | 25 | 0 | 100 | 0 | 375 | 180.0 |
FA(B)S sf/(sf + fa) = 0.4 | 50 | 0 | 75 | 0 | 375 | 190.0 |
FA(B)G sf/(sf + fa) = 0.0 | 0 | 0 | 0 | 125 | 375 | 170.0 |
FA(B)G sf/(sf + fa) = 0.2 | 25 | 0 | 0 | 100 | 375 | 171.5 |
FA(B)G sf/(sf + fa) = 0.4 | 50 | 0 | 0 | 75 | 375 | 183.0 |
K | 0 | 0 | 0 | 0 | 500 | 165.0 |
Property | Ground Biomass Fly Ash | Sieved Biomass Fly Ash |
---|---|---|
Loss on ignition | 8.0% | 7.8% |
Strength activity index after 28 days | 70.0% | 78.4% |
Strength activity index after 90 days | 68.3% | 70.8% |
Oxide | FA(B)N sf/(sf + fa) = 0.0 | FA(B)S sf/(sf + fa) = 0.0 | FA(B)G sf/(sf + fa) = 0.0 |
---|---|---|---|
SiO2 | 9.6 | 5.9 | 14.2 |
Al2O3 | 2.4 | 0.0 | 0.0 |
P2O5 | 0.0 | 0.0 | 0.0 |
K2O | 14.7 | 14.7 | 14.1 |
CaO | 56.1 | 61.7 | 55.4 |
MnO | 3.1 | 3.4 | 2.8 |
Fe2O3 | 7.9 | 8.5 | 8.1 |
CuO | 0.0 | 0.0 | 0.0 |
ZnO | 0.0 | 0.1 | 0.1 |
As2O3 | 0.5 | 0.6 | 0.5 |
SO3 | 0.0 | 0.0 | 0.0 |
TiO2 | 4.3 | 4.2 | 3.9 |
Cl | 0.6 | 0.6 | 0.6 |
BaO | 0.7 | 0.0 | 0.0 |
Oxide | FA(B)N sf/(sf + fa) = 0.2 | FA(B)N sf/(sf + fa) = 0.4 | FA(B)S sf/(sf + fa) = 0.2 | FA(B)S sf/(sf + fa) = 0.4 | FA(B)G sf/(sf + fa) = 0.2 | FA(B)G sf/(sf + fa) = 0.4 |
---|---|---|---|---|---|---|
SiO2 | 25.9 | 42.1 | 22.9 | 39.9 | 29.5 | 44.9 |
Al2O3 | 1.9 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 |
P2O5 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 |
K2O | 12.3 | 9.9 | 12.3 | 9.9 | 11.8 | 9.5 |
CaO | 45.0 | 34.0 | 49.5 | 37.3 | 44.5 | 33.6 |
MnO | 2.6 | 2.1 | 2.8 | 2.3 | 2.4 | 1.9 |
Fe2O3 | 7.2 | 6.5 | 7.7 | 6.9 | 7.4 | 6.7 |
CuO | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
ZnO | 0.4 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 |
As2O3 | 0.0 | 0.0 | 0.5 | 0.4 | 0.4 | 0.4 |
SO3 | 3.4 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
TiO2 | 0.5 | 0.4 | 3.4 | 2.5 | 3.1 | 2.3 |
Cl | 0.6 | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 |
BaO | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popławski, J.; Lelusz, M. Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars. Materials 2021, 14, 6654. https://doi.org/10.3390/ma14216654
Popławski J, Lelusz M. Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars. Materials. 2021; 14(21):6654. https://doi.org/10.3390/ma14216654
Chicago/Turabian StylePopławski, Jakub, and Małgorzata Lelusz. 2021. "Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars" Materials 14, no. 21: 6654. https://doi.org/10.3390/ma14216654
APA StylePopławski, J., & Lelusz, M. (2021). Influence of Mechanical and Mineralogical Activation of Biomass Fly Ash on the Compressive Strength Development of Cement Mortars. Materials, 14(21), 6654. https://doi.org/10.3390/ma14216654