Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study
Abstract
:1. Introduction
• Tc-99m | 140 keV |
• In-111 | 172,247 keV |
• Ga-67 | 93,185,300 keV |
• I-123 | 159 keV |
• I-131 | 364 keV |
• Kr-81m | 190 keV |
• Tl-201 | 75,167 keV |
• Xe-133 | 364 keV |
2. Materials and Methods
2.1. Theoretical Density Calculations
2.2. Method of Calculating Radiation Absorption Parameters
2.3. Monte Carlo Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolfe, B. Energy Problems of The Future Can We Solve Them? In Challenges to Nuclear Power Twenty-First Century; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 81–87. [Google Scholar] [CrossRef]
- Prăvălie, R.; Bandoc, G. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J. Environ. Manag. 2018, 209, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Singh, K.J.; Kurudirek, M.; Thakur, S. Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 223, 117309. [Google Scholar] [CrossRef]
- Lee, C.-M.; Lee, Y.H.; Lee, K.J. Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy 2007, 49, 303–312. [Google Scholar] [CrossRef]
- Singh, N.; Singh, K.J.; Singh, K.; Singh, H. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 225, 305–309. [Google Scholar] [CrossRef]
- Obaid, S.S.; Sayyed, M.I.; Gaikwad, D.K.; Pawar, P.P. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 2018, 148, 86–94. [Google Scholar] [CrossRef]
- Saddeek, Y.B.; Issa, S.A.M.; Alharbi, T.; Elsaman, R.; Abd elfadeel, G.; Mostafa, A.M.A.; Aly, K.; Ahmad, M. Synthesis and characterization of lead borate glasses comprising cement kiln dust and Bi2O3 for radiation shielding protection. Mater. Chem. Phys. 2019, 242, 122510. [Google Scholar] [CrossRef]
- Akkurt, I.; Calik, A.; Akyıldırım, H. The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel. Nucl. Eng. Des. 2011, 241, 55–58. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Mostafa, A.M.A.; Hanafy, T.A.; Dong, M.; Xue, X. Comparison study of photon attenuation characteristics of Poly vinyl alcohol (PVA) doped with Pb(NO3)2 by MCNP5 code, XCOM and experimental results. Prog. Nucl. Energy 2019, 111, 15–23. [Google Scholar] [CrossRef]
- Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 2016, 318, 751–757. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Ahmad, M.; Tekin, H.O.; Saddeek, Y.B.; Sayyed, M.I. Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system. Results Phys. 2019, 13, 102165. [Google Scholar] [CrossRef]
- Kirdsiri, K.; Kaewkhao, J.; Pokaipisit, A.; Chewpraditkul, W.; Limsuwan, P. Gamma-rays shielding properties of xPbO:(100−x) B2O3 glasses system at 662 keV. Ann. Nucl. Energy 2009, 36, 1360–1365. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Ali, A.M.; Tekin, H.O.; Saddeek, Y.B.; Al-Hajry, A.; Algarni, H.; Susoy, G. Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nucl. Eng. Technol. 2020, 52, 1297–1303. [Google Scholar] [CrossRef]
- Limkitjaroenporn, P.; Kaewkhao, J.; Limsuwan, P.; Chewpraditkul, W. Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids 2011, 72, 245–251. [Google Scholar] [CrossRef]
- Mostafa, A.M.A.; Zakaly, H.M.; Al-Ghamdi, S.A.; Issa, S.A.; Al-Zaibani, M.; Ramadan, R.M.; El Agammy, E.F. PbO–Sb2O3–B2O3–CuO glassy system: Evaluation of optical, gamma and neutron shielding properties. Mater. Chem. Phys. 2021, 258, 123937. [Google Scholar] [CrossRef]
- Alatawi, A.; Alsharari, A.M.; Issa, S.A.M.; Rashad, M.; Darwish, A.A.A.; Saddeek, Y.B.; Tekin, H.O. Improvement of mechanical properties and radiation shielding performance of AlBiBO3 glasses using yttria: An experimental investigation. Ceram. Int. 2020, 46, 3534–3542. [Google Scholar] [CrossRef]
- Gupta, N.; Kaur, A.; Khanna, A.; Gonzàlez, F.; Pesquera, C.; Iordanova, R.; Chen, B. Structure-property correlations in TiO2-Bi2O3-B2O3-TeO2 glasses. J. Non Cryst. Solids 2017, 470, 168–177. [Google Scholar] [CrossRef]
- Amat, A.; Halimah, M.K.; Ahmad, N. Optical Properties of [(TeO2)0.7 (B2O3)0.3]1−x (Bi2O3)x Glass System. Adv. Mater. Res. 2015, 1107, 426–431. [Google Scholar] [CrossRef]
- El Batal, F.H. Gamma ray interaction with bismuth silicate glasses. Nucl. Instrum. Methods Phys. Res. B 2007, 254, 243–253. [Google Scholar] [CrossRef]
- Dult, M.; Kundu, R.S.; Murugavel, S.; Punia, R.; Kishore, N. Conduction mechanism in bismuth silicate glasses containing titanium. Physica B 2014, 452, 102–107. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Huang, F.; Ren, J.; Yuan, S.; Chen, G. Characterization of new tellurite glasses and crystalline phases in the TeO2–PbO–Bi2O3–B2O3 system. J. Non Cryst. Solids 2014, 386, 90–94. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, Y.; Fan, H.; Zhang, J.; Hu, L. Properties and Structures of Bi2O3–B2O3–TeO2 Glass. J. Mater. Sci. Technol. 2013, 29, 209–214. [Google Scholar] [CrossRef]
- Elkhoshkhany, N.; Abbas, R.; El-Mallawany, R.; Hathot, S.F. Optical properties and crystallization of bismuth boro-tellurite glasses. J. Non Cryst. Solids 2017, 476, 15–24. [Google Scholar] [CrossRef]
- Shimada, Y.; Ohara, S. Nd3+-doped Bi2O3-B2O3-TeO2 glass for solar pumped lasers. In CLEO: Science and Innovations, Proceedings of the Conference on Lasers and Electro-Optics 2012, San Jose, CA, USA, 6–11 May 2012; OSA: Washington, DC, USA, 2012; CF3A.2. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, D.; Singh, T. Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 2016, 307, 364–376. [Google Scholar] [CrossRef]
- Dong, M.G.; Sayyed, M.I.; Lakshminarayana, G.; Ersundu, M.Ç.; Ersundu, A.E.; Nayar, P.; Mahdi, M.A. Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. J. Non Cryst. Solids 2017, 468, 12–16. [Google Scholar] [CrossRef]
- Munoz-Martín, D.; Villegas, M.A.; Gonzalo, J.; Fernández-Navarro, J.M. Characterisation of glasses in the TeO2–WO3–PbO system. J. Eur. Ceram. Soc. 2009, 29, 2903–2913. [Google Scholar] [CrossRef] [Green Version]
- Adel, G.; Mokhtar, H.M. Physical Properties of Nb2O5 BaO TeO2 Glass System with Compositional Variations. Egypt. J. Phys. 2018, 46, 23–28. [Google Scholar]
- Gowda, S.; Krishnaveni, S.; Yashoda, T.; Umesh, T.K.; Gowda, R. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana 2004, 63, 529–541. [Google Scholar] [CrossRef]
- Elmahroug, Y.; Tellili, B.; Souga, C. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 2015, 75, 268–274. [Google Scholar] [CrossRef]
- Kavaz, E.; Tekin, H.O.; Agar, O.; Altunsoy, E.E.; Kilicoglu, O.; Kamislioglu, M.; Abuzaid, M.M.; Sayyed, M.I. The Mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. 2019, 45, 15348–15357. [Google Scholar] [CrossRef]
- Issa, S.A.M. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 2016, 120, 33–37. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Qashou, S.I.; Khattari, Z.Y. Radiation shielding competence of newly developed TeO2-WO3 glasses. J. Alloys Compd. 2017, 696, 632–638. [Google Scholar] [CrossRef]
- RSICC Computer Code Collection; MCNPX User’s Manual Version 2.4.0; Monte Carlo N-Particle Transport Code System for Multiple and High Energy Applications; Oak Ridge National Laboratory: Oak Ridge, TN, USA; Advanced Accelerator Applications Los Alamos National Laboratory: Los Alamos, NM, USA, 2002.
- Inaba, S.; Fujino, S. Empirical Equation for Calculating the Density of Oxide Glasses. J. Am. Ceram. Soc. 2009, 93, 217–220. [Google Scholar] [CrossRef]
- Berger, M.J.; Hubbell, J.H. XCOM: Photon Cross Sections on a Personal Computer; National Bureau of Standards: Washington, DC, USA, 1987.
- Bashter, I.I. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 1997, 24, 1389–1401. [Google Scholar] [CrossRef]
- Tekin, H.O.; Issa, S.A.M.; Kavaz, E.; Guclu, E.E.A. The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express 2019, 6, 115212. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Issa, S.A.M.; Tekin, H.O.; Saddeek, Y.B. Comparative study of gamma ray shielding and elastic properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 glass systems. Mater. Chem. Phys. 2018, 217, 11–22. [Google Scholar] [CrossRef]
- Kavaz, E.; Ekinci, N.; Tekin, H.O.; Sayyed, M.I.; Aygun, B.; Perisanoglu, U. Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 2019, 115, 12–20. [Google Scholar] [CrossRef]
- Mahmoud, I.S.; Issa, S.A.M.; Saddeek, Y.B.; Tekin, H.O.; Kilicoglu, O.; Alharbi, T.; Sayyed, M.I.; Erguzel, T.T.; Elsaman, R. Gamma, neutron shielding and mechanical parameters for vanadium lead vanadate glasses. Ceram. Int. 2019, 45, 14058–14072. [Google Scholar] [CrossRef]
Code | Bi2O3 (mole%) | SiO2 (mole%) | O (wt%) | Si (wt%) | Bi (wt%) | ρ (g/cm3) |
---|---|---|---|---|---|---|
BISI1 | 20 | 80 | 0.52529 | 0.295312 | 0.179398 | 3.537 |
BISI2 | 30 | 70 | 0.472505 | 0.258398 | 0.269097 | 4.207 |
BISI3 | 40 | 60 | 0.41972 | 0.221484 | 0.358796 | 4.878 |
BISI4 | 50 | 50 | 0.366935 | 0.18457 | 0.448495 | 5.548 |
BISI5 | 60 | 40 | 0.31415 | 0.147656 | 0.538194 | 6.218 |
BISI6 | 70 | 30 | 0.261365 | 0.110742 | 0.627893 | 6.889 |
E (keV) | BISI1 | BISI2 | BISI3 | BISI4 | BISI5 | BISI6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
XCOM | MCNPX | XCOM | MCNPX | XCOM | MCNPX | XCOM | MCNPX | XCOM | MCNPX | XCOM | MCNPX | |
75 | 0.617 | 0.619 | 0.835 | 0.836 | 1.053 | 1.058 | 1.271 | 1.273 | 1.489 | 1.491 | 1.707 | 1.712 |
93 | 1.324 | 1.327 | 1.906 | 1.912 | 2.488 | 2.491 | 3.069 | 3.101 | 3.651 | 3.653 | 4.232 | 4.238 |
140 | 0.535 | 0.539 | 0.733 | 0.735 | 0.931 | 0.935 | 1.130 | 1.136 | 1.328 | 1.334 | 1.526 | 1.531 |
159 | 0.415 | 0.417 | 0.556 | 0.559 | 0.697 | 0.701 | 0.838 | 0.841 | 0.979 | 0.981 | 1.121 | 1.123 |
167 | 0.378 | 0.379 | 0.501 | 0.504 | 0.625 | 0.627 | 0.749 | 0.754 | 0.873 | 0.876 | 0.996 | 0.103 |
172 | 0.358 | 0.357 | 0.472 | 0.475 | 0.586 | 0.589 | 0.700 | 0.705 | 0.814 | 0.815 | 0.929 | 0.931 |
185 | 0.314 | 0.317 | 0.407 | 0.408 | 0.501 | 0.503 | 0.595 | 0.601 | 0.689 | 0.701 | 0.783 | 0.784 |
190 | 0.299 | 0.301 | 0.387 | 0.391 | 0.474 | 0.471 | 0.561 | 0.564 | 0.648 | 0.653 | 0.736 | 0.738 |
247 | 0.199 | 0.202 | 0.242 | 0.245 | 0.285 | 0.286 | 0.328 | 0.331 | 0.370 | 0.372 | 0.413 | 0.417 |
300 | 0.156 | 0.157 | 0.182 | 0.181 | 0.207 | 0.210 | 0.232 | 0.235 | 0.257 | 0.256 | 0.282 | 0.285 |
364 | 0.128 | 0.129 | 0.143 | 0.145 | 0.158 | 0.159 | 0.172 | 0.174 | 0.187 | 0.190 | 0.202 | 0.205 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALMisned, G.; Zakaly, H.M.H.; Issa, S.A.M.; Ene, A.; Kilic, G.; Bawazeer, O.; Almatar, A.; Shamsi, D.; Rabaa, E.; Sideig, Z.; et al. Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study. Materials 2021, 14, 6668. https://doi.org/10.3390/ma14216668
ALMisned G, Zakaly HMH, Issa SAM, Ene A, Kilic G, Bawazeer O, Almatar A, Shamsi D, Rabaa E, Sideig Z, et al. Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study. Materials. 2021; 14(21):6668. https://doi.org/10.3390/ma14216668
Chicago/Turabian StyleALMisned, Ghada, Hesham M. H. Zakaly, Shams A. M. Issa, Antoaneta Ene, Gokhan Kilic, Omemh Bawazeer, Albandari Almatar, Dalal Shamsi, Elaf Rabaa, Zuhal Sideig, and et al. 2021. "Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study" Materials 14, no. 21: 6668. https://doi.org/10.3390/ma14216668
APA StyleALMisned, G., Zakaly, H. M. H., Issa, S. A. M., Ene, A., Kilic, G., Bawazeer, O., Almatar, A., Shamsi, D., Rabaa, E., Sideig, Z., & Tekin, H. O. (2021). Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study. Materials, 14(21), 6668. https://doi.org/10.3390/ma14216668