Particle Size Effect of Oyster Shell on Mortar: Experimental Investigation and Modeling
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Cement
2.1.2. Fine Aggregates
2.1.3. Superplasticizer (SP)
2.2. Mixture Proportions
2.3. Sample Preparation and Curing Conditions
2.4. Properties of Fresh Mortar
2.5. Properties of Hardened Mortar
2.5.1. Mechanical Property
2.5.2. Static Elasticity Modulus
2.5.3. Water Absorption and Drying Shrinkage
2.5.4. Stress–Strain Curves
3. Results and Discussion
3.1. Properties of Fresh Mortar
3.1.1. Initial Slump Flow and Slump Flow Loss Rate
3.1.2. Setting Time
3.2. Properties of Hardened Mortar
3.2.1. Compressive Strength
3.2.2. Flexural Strength
3.2.3. Static Elasticity Modulus
3.2.4. Stress–Strain Curves
3.2.5. Drying Shrinkage
3.3. Eco-Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendo, J.; Wolff, M.; Mendo, T.; Ysla, L. Scallop fishery and culture in Peru. Suisan Zoshoku 2016, 40, 1089–1109. [Google Scholar]
- Chen, D.; Zhang, P.C.; Pan, T.; Liao, Y.D.; Zhao, H. Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials. J. Clean. Prod. 2019, 237, 117811. [Google Scholar] [CrossRef]
- Liu, R.W.; Chen, D.; Cai, X.L.; Deng, Z.M.; Liao, Y.D. Hardened properties of mortar mixtures containing pre-treated waste oyster shells. J. Clean. Prod. 2020, 266, 121729. [Google Scholar] [CrossRef]
- Ez-Zaki, H.; Diouri, A.; Kamali-Bernard, S.; Sassi, O. Composite cement mortars based on marine sediments and oyster shell powder. Mater. Construct. 2016, 66, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kuo, W.T.; Wang, H.Y.; Shu, C.Y.; Su, D.S. Engineering properties of controlled low-strength materials containing waste oyster shells. Mater. Construct. 2013, 46, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, J.; Freer, A.; Cusack, M. Attachment of oysters to natural substrata by biologically induced marine carbonate cement. Mar. Biol. 2010, 157, 2087–2095. [Google Scholar] [CrossRef]
- AlBadr, R.M.; Halfi, S.A.; Ziadan, K.M. The effectiveness of oyster filler on the physical and mechanical properties of novel dental restorative composite. AIP Conf. Proc. 2020, 2290, 05001. [Google Scholar]
- Kwon, H.B.; Lee, C.W.; Jun, B.S.; Yun, J.D.; Weon, S.Y.; Koopman, B. Recycling waste oyster shells for eutrophication control. Resour. Conserv. Recycl. 2004, 41, 75–82. [Google Scholar] [CrossRef]
- Varhen, C.; Carrillo, S.; Ruiz, G. Experimental investigation of Peruvian scallop used as fine aggregate in concrete. Constr. Build. Mater. 2017, 136, 533–540. [Google Scholar] [CrossRef]
- Wang, H.Y.; Chen, P.Y.; Chen, J.H. Effect of Waste Oyster Shell Resurgent on Engineering Properties of Cement Mortar. In Proceedings of the International Conference on Consumer Electronics and Digital Communications Network, Xianning, China, 11–13 March 2011; pp. 4941–4944. [Google Scholar]
- Yoon, H.; Park, S.; Lee, K.; Park, J. Oyster shell as substitute for aggregate in mortar. Waste Manag Res. 2004, 22, 158–170. [Google Scholar] [CrossRef]
- Cuadrado-Rica, H.; Sebaibi, N.; Boutouil, M.; Boudart, B. Properties of ordinary concretes incorporating crushed queen scallop shells. Smart Mater. Struct. 2016, 49, 1–12. [Google Scholar] [CrossRef]
- Safi, B.; Saidi, M.; Daoui, A.; Bellal, A.; Mechekak, A.; Toumi, K. The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Constr. Build. Mater. 2015, 78, 430–438. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 2012, 11, 133–141. [Google Scholar] [CrossRef]
- Yang, E.I.; Yi, S.T.; Leem, Y.M. Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cem. Concr. Res. 2005, 35, 2175–2182. [Google Scholar] [CrossRef]
- Dang, H.N.; Boutouil, M.; Sebaibi, N.; Leleyter, L.; Baraud, F. Valorization of seashell by-products in pervious concrete pavers. Constr. Build. Mater. 2013, 49, 151–160. [Google Scholar]
- Benabed, B.; Kadri, E.H.; Azzouz, L.; Kenai, S. Properties of self-compacting mortar made with various types of sand. Cem. Concr. Compos. 2012, 34, 1167–1173. [Google Scholar] [CrossRef]
- Bédérina, M.; Khenfer, M.M.; Dheilly, R.M.; Quéneudec, M. Reuse of local sand: Effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cem. Concr. Res. 2005, 35, 1172–1179. [Google Scholar] [CrossRef]
- Shao, Y.; Lefort, T.; Moras, S.; Rodriguez, D. Studies on concrete containing ground waste glass. Cem. Concr. Res. 2000, 30, 91–100. [Google Scholar] [CrossRef]
- Liu, C.; Xie, D.Q.; She, W.; Liu, Z.Y.; Liu, G.J.; Yang, L.; Zhang, Y.S. Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material. Constr. Build. Mater. 2018, 189, 1251–1263. [Google Scholar] [CrossRef]
- European Commitee for Standardization. Methods of Test for Mortar for Masonry-Part 3: Determination of Consistence of Fresh Mortar; EN 1015-3; European Committee for Standardization: Brussels, Belgium, 1999. [Google Scholar]
- European Commitee for Standardization. Admixtures for Concrete, Mortar and Grout-Test Methods-Part 2: Determination of Setting Time; EN 480-2; European Committee for Standardization: Brussels, Belgium, 2006. [Google Scholar]
- European Commitee for Standardization. Methods of Test for Mortar for Masonry-Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar; EN 1015-11; European Committee for Standardization: Brussels, Belgium, 1999. [Google Scholar]
- ASTM International. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes; ASTM C 1585; ASTM International: West Conshocken, PA, USA, 2013. [Google Scholar]
- ASTM International. Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete; ASTM C 157/C157 M; ASTM International: West Conshocken, PA, USA, 2008. [Google Scholar]
- Chen, D.; Pan, T.; Yu, X.T.; Liao, Y.D.; Zhao, H. Properties of hardened mortars containing crushed waste oyster shells. Environ. Eng. Sci. 2019, 36, 1079–1088. [Google Scholar] [CrossRef]
- Bosiljkov, V.B. SCC mixes with poorly graded aggregate and high volume of limestone filler. Cem. Concr. Res. 2003, 33, 1279–1286. [Google Scholar] [CrossRef]
- European Commitee for Standardization. Composition, Specifications and Conformity Criteria for Common Cements; EN-197-1; European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- Lu, J.X.; Duan, Z.H.; Chi, S.P. Fresh properties of cement pastes or mortars incorporating waste glass powder and cullet. Constr. Build. Mater. 2017, 131, 793–799. [Google Scholar] [CrossRef]
- Wongkeo, W.; Thongsanitgarn, P.; Ngamjarurojana, A.; Chaipanich, A. Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Mater. Des. 2014, 64, 261–269. [Google Scholar] [CrossRef]
- ACI Committee. Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures; ACI 209R-92; ACI Committee: Farmington Hills, MI, USA, 1994. [Google Scholar]
- Yang, K.H.; Hwang, H.Z.; Kim, S.Y.; Song, J.K. Development of a cementless mortar using hwangtoh binder. Build. Environ. 2007, 42, 3717–3725. [Google Scholar] [CrossRef]
- Yang, K.H.; Cho, A.R.; Song, J.K.; Nam, S.H. Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr. Build. Mater. 2012, 29, 410–419. [Google Scholar] [CrossRef]
- Hamza, S.; Slimane, N.; Azari, Z.; Pluvinage, G. Structural and mechanical properties of the coral and nacre and the potentiality of their use as bone substitutes. Appl. Surf. Sci. 2013, 264, 485–491. [Google Scholar] [CrossRef]
- Sevim, U.K.; Lumen, Y. Strength and fresh properties of borogypsum concrete. Constr. Build. Mater. 2013, 48, 342–347. [Google Scholar] [CrossRef]
- Roy, R.L.; Parant, E.; Boulay, C. Taking into account the inclusions’ size in lightweight concrete compressive strength prediction. Cem. Concr. Res. 2005, 35, 770–775. [Google Scholar] [CrossRef]
- Latroch, A.S.; Benosman, N.; Bouhamou, E.; Senhadji, Y.; Mouli, M. Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride. Constr. Build. Mater. 2018, 175, 77–87. [Google Scholar] [CrossRef]
- Coppola, B.; Courard, L.; Michel, F.; Incarnato, L.; Maio, L.D. Investigation on the use of foamed plastic waste as natural aggregates replacement in lightweight mortar. Compos. B. Eng. 2016, 99, 75–83. [Google Scholar] [CrossRef]
- Xu, J.; Peng, C.; Wan, L.; Wu, Q.; She, W. Effect of crack self-healing on concrete diffusivity: Meso-scale dynamics simulation study. J. Mater. Civ. Eng. 2020, 32, 04020149. [Google Scholar] [CrossRef]
- Königsberger, M.; Pichler, B.; Hellmich, C. Micromechanics of ITZ-aggregate interaction in concrete part II: Strength upscaling. J. Am. Ceram. Soc. 2014, 97, 543–551. [Google Scholar] [CrossRef]
- Tasdemir, C.; Tasdemir, M.A.; Lydon, F.D.; Barr, B.I.G. Effects of silica fume and aggregate size on the brittleness of concrete. Cem. Concr. Res. 1996, 26, 63–68. [Google Scholar] [CrossRef]
- Yu, X.T.; Chen, D.; Feng, J.R.; Zhang, Y.; Liao, Y.D. Behavior of mortar exposed to different exposure conditions of sulfate attack. Ocean Eng. 2018, 157, 1–12. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhang, J.H.; Yu, H.F.; Ma, H.Y. Coupling effect of strain rate and specimen size on the compressive properties of coral aggregate concrete: A 3D mesoscopic study. Compos. B. Eng. 2020, 200, 108299. [Google Scholar] [CrossRef]
- Da, B.; Yu, H.F.; Ma, H.Y.; Tan, Y.S.; Mi, R.J.; Dou, X.M. Experimental investigation of whole stress-strain curves of coral concrete. Constr. Build. Mater. 2016, 122, 81–89. [Google Scholar] [CrossRef]
- Yang, L.; Gao, D.; Zhang, Y.; She, W. Study on water and chloride transport in cracked mortar using X-ray CT, gravimetric method and natural immersion method. Constr. Build. Mater. 2018, 176, 652–664. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Jing, Y.N.; Deng, X.Y.; Li, J.B.; Bai, C.Y.; Jiang, W.K. Fabrication and properties of SiC/mullite composite porous ceramics. Ceram. Int. 2014, 40, 1329–1334. [Google Scholar] [CrossRef]
- Da, B.; Yu, H.F.; Ma, H.Y.; Tan, Y.S.; Mi, R.J.; Dou, X.M. Chloride diffusion study of coral concrete in a marine environment. Constr. Build. Mater. 2016, 123, 47–58. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Zhang, M.H.; Malhotra, V.M. Superplasticized Portland cement: Production and compressive strength of mortars and concrete. Cem. Concr. Res. 1998, 28, 1783–1796. [Google Scholar] [CrossRef]
Chemical Compositions (%) | Mineral Compositions (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | Na2O | K2O | MgO | TiO2 | C3S | C2S | C4AF | C3A |
60.16 | 21.35 | 4.94 | 2.71 | 1.96 | 1.00 | 0.48 | 0.46 | 0.15 | 60.74 | 16.18 | 14.17 | 6.66 |
Sample | Cement (kg/m3) | Fine Aggregate (kg/m3) | Global F.M. | SNF SP (kg/m3) | Water (kg/m3) | W/C | |||
---|---|---|---|---|---|---|---|---|---|
River Sand | Fine WOS | Middle WOS | Coarse WOS | ||||||
WOS-C | 608 | 1216 | / | / | 304 | 2.18 | 1.52 (0.25%) | 273.6 | 0.45 |
WOS-M | 608 | 1216 | / | 304 | / | 1.97 | 1.52 (0.25%) | 273.6 | 0.45 |
WOS-F | 608 | 1216 | 304 | / | / | 1.75 | 1.52 (0.25%) | 273.6 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Shi, H.; Zhang, S.; Da, B.; Chen, D. Particle Size Effect of Oyster Shell on Mortar: Experimental Investigation and Modeling. Materials 2021, 14, 6813. https://doi.org/10.3390/ma14226813
Liao Y, Shi H, Zhang S, Da B, Chen D. Particle Size Effect of Oyster Shell on Mortar: Experimental Investigation and Modeling. Materials. 2021; 14(22):6813. https://doi.org/10.3390/ma14226813
Chicago/Turabian StyleLiao, Yingdi, Hongyi Shi, Shimin Zhang, Bo Da, and Da Chen. 2021. "Particle Size Effect of Oyster Shell on Mortar: Experimental Investigation and Modeling" Materials 14, no. 22: 6813. https://doi.org/10.3390/ma14226813
APA StyleLiao, Y., Shi, H., Zhang, S., Da, B., & Chen, D. (2021). Particle Size Effect of Oyster Shell on Mortar: Experimental Investigation and Modeling. Materials, 14(22), 6813. https://doi.org/10.3390/ma14226813