Enhanced Acceptance Specification of Asphalt Binder to Drive Sustainability in the Paving Industry
Abstract
:1. Introduction
2. Background
3. Experimental
3.1. Materials
3.2. Methods
4. Results and Discussion
4.1. Oscillatory Shear Testing
4.2. Creep Testing
4.3. Tertiary Creep Testing
5. Summary and Conclusions
- Constraint increases in thinner films and the limiting phase angle temperatures increase accordingly. However, there is a strong correlation between limiting temperatures measured in films of 0.5 mm (new protocol) and 2.0 mm (AASHTO M 320 standard) thickness.
- The limiting phase angle temperature shows a very strong correlation with the EBBR LLTG temperature (R2 = 0.93), and a somewhat lesser correlation with the regular BBR temperature (R2 = 0.89).
- The ranges for limiting T(δ = 30°) (20.9 °C) and EBBR (16.5 °C) temperatures for this set of 32 binders were about 91 and 46% improved over the range of the regular BBR temperature (10.7 °C). Hence, the limiting phase angle temperature is significantly more responsive to changes in binder properties than both the BBR and EBBR.
- The phase angle reflects the binder’s ability to relax thermal and traffic induced stresses and will therefore provide a good correlation with pavement cracking performance. Those binders that are of a gel type (low phase angle) are expected to perform poorly in service, while those binders that are of a sol type (high phase angle) are expected to perform well.
- If and how a measure of binder stiffness needs to be included in the specification needs careful deliberation and further investigation through field monitoring of the investigated materials.
- The DENT CTOD can be approximated with a high degree of accuracy by the failure point in the tertiary creep test. Whether and how this property needs to be included in future cracking specifications deserves further investigation through careful study of the long-term performance of the investigated materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- The ABCs of PGAC: The Use of Performance Graded Asphalt Cements in Ontario. Available online: http://www.onasphalt.org/files/Publications/ABCs%20of%20PGAC.pdf (accessed on 20 September 2020).
- Zhao, M.O.; Hesp, S.A.M. Performance grading of the Lamont, Alberta C-SHRP pavement trial binders. Int. J. Pavement Eng. 2006, 7, 199–211. [Google Scholar] [CrossRef]
- Iliuta, S.; Andriescu, A.; Hesp, S.A.M.; Tam, K.K. Improved approach to low-temperature and fatigue fracture performance grading of asphalt cements. Proc. Can. Technol. Asphalt Assoc. 2004, 49, 123–158. [Google Scholar]
- Yee, P.; Aida, B.; Hesp, S.A.M.; Marks, P.; Tam, K.K. Analysis of Premature Low-Temperature Cracking in Three Ontario, Canada, Pavements. Transp. Res. Rec. J. Transp. Res. Board 2006, 1962, 44–51. [Google Scholar] [CrossRef]
- Hesp, S.A.M.; Soleimani, A.; Subramani, S.; Phillips, T.; Smith, D.; Marks, P.; Tam, K.K. Asphalt pavement cracking: Analysis of extraordinary life cycle variability in eastern and northeastern Ontario. Int. J. Pavement Eng. 2009, 10, 209–227. [Google Scholar] [CrossRef]
- Hesp, S.A.M.; Shurvell, H.F. Waste engine oil residue in asphalt cement. In Proceedings of the Mairepav7: Seventh International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, Auckland, New Zealand, 28–30 August 2012. [Google Scholar]
- Ding, H.; Tetteh, N.; Hesp, S.A.M. Preliminary experience with improved asphalt cement specifications in the City of Kingston, Ontario, Canada. Constr. Build. Mater. 2017, 157, 467–475. [Google Scholar] [CrossRef]
- Ding, H.; Gotame, Y.; Nie, Y.; Hesp, S.A.M. Acceptance testing of extracted and recovered asphalt cements for provincial and municipal paving contracts in Ontario. Proc. Can. Technol. Asphalt Assoc. 2018, 63, 43–60. [Google Scholar]
- Akentuna, H.; Ding, A.; Khan, A.N.; Li, Y.; Hesp, S.A.M. Improved performance grading of asphalt cement and hot mix asphalt in Ontario, Canada. Int. J. Pavement Res. Technol. 2021, 14, 267–275. [Google Scholar] [CrossRef]
- Li, Y.; Ding, H.; Nie, Y.; Hesp, S.A.M. Effective control of flexible asphalt pavement cracking through quality assurance testing of extracted and recovered binders. Constr. Build. Mater. 2021, 273, 121769. [Google Scholar] [CrossRef]
- Angius, E.; Ding, H.; Hesp, S.A.M. Durability assessment of asphalt binder. Constr. Build. Mater. 2018, 165, 264–271. [Google Scholar] [CrossRef]
- Campbell, S.; Ding, H.; Hesp, S.A.M. Double-edge-notched tension testing of asphalt mastics. Constr. Build. Mater. 2018, 166, 87–95. [Google Scholar] [CrossRef]
- Diak, E.; Beyer, E.; Hesp, S.A.M. Development of a Butt Joint Test for the ductile performance grading of asphalt binders. Constr. Build. Mater. 2020, 243, 118195. [Google Scholar] [CrossRef]
- Dow, A.W. The testing of bitumens for paving purposes. Proc. ASTM 1903, 3, 349–369. [Google Scholar]
- Dow, A.W. Discussion on ductility test. Proc. Assoc. Asphalt Paving Technol. 1936, 41, 139–141. [Google Scholar]
- Hubbard, P.; Pritchard, F.P. Effect of controllable variables upon the penetration test for asphalts and asphalt cements. J. Agric. Res. 1916, 5, 805–818. [Google Scholar]
- Traxler, R.; Coombs, C. The colloidal nature of asphalt as shown by its flow properties. J. Phys. Chem. 1936, 40, 1133–1147. [Google Scholar] [CrossRef]
- Traxler, R.N.; Schweyer, H.E. Increase in viscosity of asphalts with time. In Proceedings of the American Society for Testing Materials, Philadelphia, PA, USA, 4 March 1936; pp. 544–551. [Google Scholar]
- Traxler, R.N.; Coombs, C.E. Development of internal structure in asphalts. In Proceedings of the American Society for Testing Materials, Philadelphia, PA, USA, 24 June–2 July 1937; pp. 549–555. [Google Scholar]
- Nellensteyn, F.J. Bereiding en Constitutie van Asphalt. Ph.D. Thesis, Delft University Netherlands, Delft, The Netherlands, 1923. [Google Scholar]
- Nellensteyn, F.J. The constitution of asphalt. J. Inst. Petrol. Technol. 1924, 10, 311–325. [Google Scholar]
- Nellensteyn, F.J. Relation of the micelle to the medium in asphalt. J. Inst. Petrol. Technol. 1928, 14, 134–138. [Google Scholar]
- Sakhanov, A.N.; Vassiliev, N.A. Solubility of solid paraffins and the solidifying temperatures of material containing them. Neftjanoe slancevoe Chozjajstvo 1924, 7, 820–837. [Google Scholar]
- Sachanen, A. Solubility of paraffin and the solidification of paraffin containing product. Petroleum Z. 1925, 21, 735–740. [Google Scholar]
- Mack, C. Colloid chemistry of asphalts. J. Phys. Chem. 1932, 36, 2901–2914. [Google Scholar] [CrossRef]
- Mack, C. Physico-chemical aspects of asphalts. Proc. Assoc. Asphalt Paving Technol. 1933, 5, 40–52. [Google Scholar]
- Saal, R.N.J.; Heukelom, W.; Blokker, P.C. Physical constants of asphaltic bitumen Part 1. J. Inst. Petrol. Technol. 1939, 26, 29–39. [Google Scholar]
- Pfeiffer, J.P.; Van Doormaal, P.M. The rheological properties of asphaltic bitumen. J. Inst. Pet. Technol. 1936, 22, 414–440. [Google Scholar]
- Read, J.; Whiteoak, D. The Shell Bitumen Handbook, 5th ed.; Thomas Telford Publishing: London, UK, 2003. [Google Scholar]
- Redelius, P. Asphaltenes in bitumen, what they are and what they are not. Road Mater. Pavement Design 2009, 10, 25–43. [Google Scholar] [CrossRef]
- Brown, A.B.; Sparks, J.W.; Smith, F. Steric hardening of asphalts. Proc. Assoc. Asphalt Paving Technol. 1957, 26, 486–494. [Google Scholar]
- Brown, A.B.; Sparks, J.W. Viscoelastic properties of a penetration grade paving asphalt at winter temperatures. Proc. Assoc. Asphalt Paving Technol. 1958, 27, 35–51. [Google Scholar]
- Blokker, P.C.; Van Hoorn, H. Durability of bitumen in theory and practice. In Proceedings of the Fifth World Petroleum Congress, New York, NY, USA, 30 May–5 June 1959. [Google Scholar]
- Bahia, H.U.M. Low-Temperature Physical Hardening of Asphalt Cements. Ph.D. Thesis, Department of Civil Engineering, The Pennsylvania State University, State College, PA, USA, December 1991. [Google Scholar]
- Bahia, H.U.; Anderson, D.A. Glass transition behavior and physical hardening of asphalt binders. J. Assoc. Asphalt Paving Technol. 1993, 62, 93–129. [Google Scholar]
- Bahia, H.U.; Anderson, D.A. Isothermal low-temperature physical hardening of asphalt. Proc. Int. Symp. Chem. Bitum. 1991, 10, 114–147. [Google Scholar]
- Kriz, P.; Stastna, J.; Zanzotto, L. Effect of thermal history on glass transition and phase compatibility of asphalts. In Proceedings of the Fourth Eurasphalt & Eurobitume Congress, Copenhagen, Denmark, 21–23 May 2008. [Google Scholar]
- Kriz, P.; Stastna, J.; Zanzotto, L. Effects of stress on physical hardening of asphalts. In Proceedings of the Sixth International Conference Pavement Technolo, Sapporo, Japan, 1–8 July 2008. [Google Scholar]
- Hesp, S.A.M.; Iliuta, S.; Shirokoff, J.W. Reversible aging in asphalt binders. Energy Fuels 2007, 21, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Marchildon, R.; Hesp, S.A.M. Effects of physical hardening on stress relaxation in asphalt cements. Transp. Res. Rec. J. Transp. Res. Board 2011, 2207, 34–42. [Google Scholar] [CrossRef]
- Jing, R.; Varveri, A.; Liu, X.; Scarpas, A.; Erkens, S. Rheological, fatigue and relaxation properties of aged bitumen. Int. J. Pav. Eng. 2019, 21, 1024–1033. [Google Scholar] [CrossRef] [Green Version]
- Traxler, R.N.; Romberg, J.W. Asphalt, a colloidal material. Ind. Eng. Chem. 1952, 44, 155–158. [Google Scholar] [CrossRef]
- Krenkler, K. The influence of paraffin content on the properties of bitumen. Bitumen-Teere-Asphalte-Peche und Verwante Stoffe 1950, 1, 185–191. [Google Scholar]
- Hou, Y.; Sun, W.; Das, P.; Song, X.; Wang, L.; Ge, Z.; Huang, Y. Coupled Navier–Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. J. Mat. Civ. Eng. 2016, 28, 04016100. [Google Scholar] [CrossRef]
- Anderson, D.A.; Kennedy, T.W. Development of SHRP binder specification. J. Assoc. Asphalt Paving Technol. 1993, 62, 481–507. [Google Scholar]
- Jamshidi, A.; Hamzah, M.O.; Shahadan, Z.; Yahaya, A.S. Evaluation of the rheological properties and activation energy of virgin and recovered asphalt binder blends. J. Mater. Civ. Eng. 2015, 27, 04014135. [Google Scholar] [CrossRef]
- Andriescu, A.; Hesp, S.A.M.; Youtcheff, J.S. Essential and plastic works of ductile fracture in asphalt binders. Transp. Res. Rec. J. Transp. Res. Board 2004, 1875, 1–8. [Google Scholar] [CrossRef]
- Andriescu, A.; Iliuta, S.; Hesp, S.A.M.; Youtcheff, J.S. Essential and plastic works of ductile fracture in asphalt binders and mixtures. Proc. Can. Technol. Asphalt Assoc. 2004, 49, 93–121. [Google Scholar]
- Andriescu, A.; Gibson, N.; Hesp, S.A.M.; Qi, X.; Youtcheff, J.S. Validation of the essential work of fracture approach to fatigue grading of asphalt binders. J. Assoc. Asphalt Paving Technol. 2006, 75E, 1–37. [Google Scholar]
- Gibson, N.; Qi, X.; Kutay, M.; Andriescu, A.; Stuart, K.; Youtcheff, J.; Harman, T. Performance Testing for Superpave and Structural Validation; Report No. FHWAHRT-11-045; FHWA, United States; Federal Highway Administration: McLean, VA, USA, 1 November 2012.
- Kriz, J.A.P.; Noël, M.R.; Quddus, R.D.S. Rheological properties of phase-incompatible bituminous binders. In Proceedings of the Seventh Eurobitumen Eurasphalt Congress, Madrid, Spain, 15–17 June 2021. [Google Scholar]
- Readshaw, E.E. Asphalt specifications in British Columbia for low temperature performance. In Proceedings of the Association of Asphalt Paving Technologists, Cleveland, OH, USA, 14–17 February 1972; pp. 562–581. [Google Scholar]
- Pechenyi, B.G.; Zhelezko, E.P. Effect of thermal relaxation on asphalt properties. Chem. Tech. Fuel. Oil. 1973, 9, 767–769. [Google Scholar] [CrossRef]
- Deme, I.J.; Young, F.D. Ste. Anne Test Road Revisited Twenty Years Later. In Proceedings of the Canadian Technical Asphalt Association, Morin Heights, QC, Canada, 30 September 1987; pp. 254–283. [Google Scholar]
- Pechenyi, B.G.; Kuznetsov, O.I. Formation of equilibrium structures in bitumens. Chem. Tech. Fuels. Oil. 1990, 26, 372–376. [Google Scholar] [CrossRef]
- Struik, L.C.E. Physical Aging in Amorphous Polymers and Other Materials; Elsevier Scientific: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Soenen, H.; De Visscher, J.; Vanelstraete, A.; Redelius, P. Influence of the thermal history on rheological properties of various bitumen. Rheol. Acta 2006, 45, 729–739. [Google Scholar] [CrossRef]
- Togunde, O.P.; Hesp, S.A.M. Physical hardening in asphalt mixtures. Int. J. Pavement Res. Technol. 2012, 5, 46–53. [Google Scholar]
- Soenen, H.; Ekblad, J.; Lu, X.; Redelius, P. Isothermal hardening in bitumen and in asphalt mix. In Proceedings of the Third Eurobitumen Eurasphalt Congress, Vienna, Austria, 12–14 May 2004. [Google Scholar]
- Claudy, P.; Letoffe, J.; Rondelez, F.; Germanaud, L.; King, G.; Planche, J.-P. A new interpretation of time-dependent physical hardening in asphalt based on DSC and optical thermoanalysis. Preprint Paper. Am. Chem. Soc., Div. Fuel Chem. 1992, 37, 1408–1426. [Google Scholar]
- Rigg, A.; Duff, A.; Nie, Y.; Somuah, M.; Tetteh, N.; Hesp, S.A.M. Non-isothermal kinetic analysis of reversible ageing in asphalt cements, Road Mater. Pavement Des. 2017, 18, 185–210. [Google Scholar] [CrossRef]
- Ding, H.; Qiu, Y.; Rahman, A. Low-temperature reversible aging properties of selected asphalt binders based on thermal analysis. J. Mat. Civ. Eng. 2019, 31, 04018402. [Google Scholar] [CrossRef]
- Nicol, E.; Marks, P.; Ding, H.; Hesp, S.A.M. Asphalt properties compared with performance in Ontario. Proc. Can. Technol. Asphalt Assoc. 2018, 63, 61–77. [Google Scholar]
- Tabib, S.; Hoque, F.; Marks, P. Ontario’s strategy to enhance asphalt cement quality. Proc. Can. Technol. Asphalt Assoc. 2015, 60, 325–346. [Google Scholar]
- Khan, A.N.; Hesp, S.A.M. Comparison between thermal, rheological and failure properties for the performance grading of asphalt cements. Constr. Build. Mater. 2019, 220, 196–205. [Google Scholar] [CrossRef]
- Goodrich, J.L. Asphalt and polymer modified asphalt properties related to the performance of asphalt concrete mixes. Proc. Assoc. Asphalt Paving Technol. 1991, 60, 117–175. [Google Scholar]
- Button, J.W.; Hastings, C.P.; Little, D.N. Effects of Asphalt Additives on Pavement Performance; Report No FHWA/TX-97/187-26; Transportation Institute: College Station, TX, USA, 1996. [Google Scholar]
- Migliori, F.; Pastor, M.; Ramond, G. Etude statistique de quelques cas de fissurations thermiques. In Proceedings of the Fifth Eurobitumen Congress, Stockholm, Sweden, 16–18 June 1993; pp. 724–728. [Google Scholar]
- Migliori, F.; Ramond, G.; Ballie, M.; Brule, B.; Exmelin, C.; Lombardi, B.; Samanos, J.; Maia, A.F.; Such, C.; Watkins, S. Correlations between the thermal stress cracking of bituminous mixes and their binders’ rheological characteristics. In Proceedings of the Eurobitume Workshop on Performance Related Properties for Bituminous Binders, Luxembourg, 3–6 May 1999; pp. 1–5. [Google Scholar]
- Widyatmoko, I.; Heslop, M.; Elliott, R. The viscous to elastic transition temperature and the in situ performance of bituminous and asphaltic materials. J. Inst. Asphalt Technol. Asphalt Prof. 2005, 14, 3–7. [Google Scholar]
- Soleimani, A.; Walsh, S.; Hesp, S.A.M. Asphalt cement loss tangent as surrogate performance indicator for control of thermal cracking. Transp. Res. Rec., J. Transp. Res. Board 2009, 2162, 39–46. [Google Scholar] [CrossRef]
- AASHTO R 28. Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2009. [Google Scholar]
- AASHTO TP 113–15. Asphalt Binder Resistance to Ductile Failure Using the Double-Edge-Notched Tension (DENT); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015. [Google Scholar]
- AASHTO TP 122–16. Performance Grade of Physically Aged Asphalt Binder Using the Extended Bending Beam Rheometer (BBR) Method; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016. [Google Scholar]
- STP 1241. Physical Properties of Asphalt Cement Binders; American Society for Testing and Materials: West Conshohocken, PA, USA, 1995. [Google Scholar]
- Khan, A.; Akentuna, M.; Pan, P.; Hesp, S.A.M. Repeatability, reproducibility, and sensitivity assessments of thermal and fatigue cracking acceptance criteria for asphalt cement. Constr. Build. Mater. 2020, 243, 117956. [Google Scholar] [CrossRef]
- Lill, K.; Khan, A.N.; Kontson, K.; Hesp, S.A.M. Comparison of performance-based specification properties for asphalt binders sourced from around the world. Constr. Build. Mater. 2020, 261, 120552. [Google Scholar] [CrossRef]
- Berkowitz, M.; Filipovich, M.; Baldi, A.; Hesp, S.A.M.; Aguiar-Moya, J.-P. Oxidative and thermoreversible aging effects on performance-based rheological properties of six Latin American asphalt binders. Energy Fuels 2019, 33, 2604–12013. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, H.; Liu, H.; Qiu, Y. Thermoreversible aging in model asphalt binders. Constr. Build. Mater. 2021, 303, 124355. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hesp, S.A.M. Enhanced Acceptance Specification of Asphalt Binder to Drive Sustainability in the Paving Industry. Materials 2021, 14, 6828. https://doi.org/10.3390/ma14226828
Li Y, Hesp SAM. Enhanced Acceptance Specification of Asphalt Binder to Drive Sustainability in the Paving Industry. Materials. 2021; 14(22):6828. https://doi.org/10.3390/ma14226828
Chicago/Turabian StyleLi, Yiming, and Simon A. M. Hesp. 2021. "Enhanced Acceptance Specification of Asphalt Binder to Drive Sustainability in the Paving Industry" Materials 14, no. 22: 6828. https://doi.org/10.3390/ma14226828
APA StyleLi, Y., & Hesp, S. A. M. (2021). Enhanced Acceptance Specification of Asphalt Binder to Drive Sustainability in the Paving Industry. Materials, 14(22), 6828. https://doi.org/10.3390/ma14226828