A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SITS-TA
2.3. Characterization of the Prepared Aptasensor
2.4. Fluorescence Emission and Attenuation Measurement
2.5. Determination of Binding Equilibrium Dissociation Constant (Kd)
2.6. Method Validation
2.7. Sensing of Thrombin in Serum Sample
2.8. Statistics
3. Results
3.1. Proposed Sensing Strategy of SITS-Aptamer for Thrombin
3.2. Design and Synthesis of SITS-TA
3.3. SITS-TA Retains Properties Required for Sensing
3.4. Fluorescence Attenuation of SITS-Thrombin27 5′ Is Affected by Thrombin Binding
3.5. Thrombin Sensing
3.6. Selectivity toward Target Protein
3.7. Regenerative Attenuation and Retained Biosensing Capacity
3.8. Detection of Thrombin in Serum Sample
3.9. Verification of the Concept with Various Thrombin Aptamers and Different SITS Grafting Sites
4. Discussion
4.1. Thrombin Aptasensor Based on Fluorescence Attenuation Kinetics
4.2. Sensing with Different Thrombin Aptamers and Different SITS Grafting Sites
4.3. Speculated Principle
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, N.; Wu, J. Rapid and reagentless detection of thrombin in clinic samples via microfluidic aptasensors with multiple target-binding sites. Biosens. Bioelectron. 2019, 146, 111726. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 2000, 407, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Degen, J.; Palumbo, J. Thrombin Control Mechanisms and Thrombin Targets in Cancer Biology. Blood 2011, 118, SCI-17. [Google Scholar] [CrossRef]
- Akiyama, H.; Ikeda, K.; Kondo, H.; Mcgeer, P.L. Thrombin accumulation in brains of patients with Alzheimer’s disease. Neurosci. Lett. 1992, 146, 152–154. [Google Scholar] [CrossRef]
- Schiller, H.; Bartscht, T.; Arlt, A.; Zahn, M.O.; Gieseler, F. Thrombin as a survival factor for cancer cells: Thrombin activation in malignant effusions in vivo and inhibition of idarubicin-induced cell death in vitro. Int. J. Clin. Pharmacol. 2002, 40, 329–335. [Google Scholar] [CrossRef]
- Suo, Z.; Citron, B.; Festoff, B. Thrombin: A Potential Proinflammatory Mediator in Neurotrauma and Neurodegenerative Disorders. Curr. Drug Targets Inflamm. Allergy 2004, 3, 105–114. [Google Scholar] [CrossRef]
- Sandoval, R.; Malik, A.B.; Naqvi, T.; Mehta, D.; Tiruppathi, C. Requirement for Ca2+ signaling in the mechanism of thrombin-induced increase in endothelial permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 280, L239–L247. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.R.; Colon, G.P.; Betz, A.L.; Keep, R.F.; Kim, S.; Hoff, J.T. Edema from intracerebral hemorrhage: The role of thrombin. Am. J. Physiol. Lung Cell. Mol. Physiol. 1996, 84, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Tetsuaki, A.; Judith, M.; Andis, K.; Guo, J.P.; Mcgeer, P.L. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 2006, 65, 19–25. [Google Scholar]
- Yang, J.; Wu, Y.; Gan, C.; Yuan, R.; Yun, X. Target-programmed and autonomous proximity binding aptasensor for amplified electronic detection of thrombin. Biosens. Bioelectron. 2018, 117, 743–747. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, T.; Hu, Y. Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for SERS-based determination of thrombin. Microchim. Acta 2019, 186, 747. [Google Scholar] [CrossRef]
- Sedlackova, E.; Bytesnikova, Z.; Birgusova, E.; Svec, P.; Ashrafi, A.M.; Estrela, P.; Richtera, L. Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay. Materials 2020, 13, 4936. [Google Scholar] [CrossRef]
- Ping, J.; Zhou, Y.; Wu, Y.; Papper, V.; Steele, T. Recent advances in aptasensors based on graphene and graphene-like nanomaterials. Biosens. Bioelectron. 2015, 64, 373–385. [Google Scholar] [CrossRef]
- Sharma, R.; Ragavan, K.V.; Thakur, M.S.; Raghavarao, K. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron. 2015, 74, 612–627. [Google Scholar] [CrossRef] [PubMed]
- Daems, E.; Dewaele, D.; Barylyuk, K.; De Wael, K.; Sobott, F. Aptamer-ligand recognition studied by native ion mobility-mass spectrometry. Talanta 2021, 224, 121917. [Google Scholar] [CrossRef] [PubMed]
- Raicopol, M.; Pilan, L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. Materials 2021, 14, 3857. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, Y.; Yue, M.-e.; Jie, G. Signal-off photoelectrochemical biosensing platform based on hybridization chain-doped manganese porphyrin quenching on CdSe signal coupling with cyclic amplification for thrombin detection. J. Electroanal. Chem. 2020, 879, 114803. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, W.; Zhao, F.; Xu, C.; Fan, G.; Liu, Q.; Zhang, X.; Zhang, X. Electrochemical sandwich-type thrombin aptasensor based on silver nanowires & particles decorated electrode and the signal amplifier of Pt loaded hollow zinc ferrite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125804. [Google Scholar] [CrossRef]
- Yu, C.H.; Ge, B.; Sen, D.; Yu, H.Z. Immobilized DNA switches as electronic sensors for picomolar detection of plasma proteins. J. Am. Chem. Soc. 2008, 130, 8023. [Google Scholar]
- Bezuneh, T.T.; Fereja, T.H.; Addisu Kitte, S.; Li, H.; Jin, Y. Enzyme-free signal amplified Au nanoparticle fluorescence detection of thrombin via target-triggered catalytic hairpin assembly. Microchem. J. 2021, 160, 105649. [Google Scholar] [CrossRef]
- Haixin, C.; Longhua, T.; Ying, W.; Jianhui, J.; Jinghong, L. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 2010, 82, 2341–2346. [Google Scholar]
- Xu, Y.; Zhou, W.; Zhou, M.; Xiang, Y.; Yuan, R.; Chai, Y. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosens. Bioelectron. 2015, 64, 306–310. [Google Scholar] [CrossRef]
- Kotlarek, D.; Curti, F.; Vorobii, M.; Corradini, R. Surface plasmon resonance-based aptasensor for direct monitoring of thrombin in a minimally processed human blood. Sens. Actuators B Chem. 2020, 320, 128380. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, X.; Liu, H.; Dai, Y.; Wei, Q. Novel Chemiluminescence Sensor for Thrombin Detection Based on Dual-Aptamer Biorecognition and Mesoporous Silica Encapsulated with Iron Porphyrin. Acs Appl. Mater. Inter. 2020, 12, 5569–5577. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tan, Y.; Zhang, C.; Yin, L.; Ma, H.; Ye, N.; Qiang, H.; Lin, Y. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens. Bioelectron. 2014, 56, 46–50. [Google Scholar] [CrossRef]
- Guo, W.J.; Yang, X.Y.; Wu, Z.; Zhang, Z.L. A colorimetric and electrochemical dual-mode biosensor for thrombin using a magnetic separation technique. J. Mater. Chem. B 2020, 8, 3574–3581. [Google Scholar] [CrossRef] [PubMed]
- Padwa, A.; Albrecht, F. Concentration effects in the photochemical syn-anti isomerization of an oxime ether. J. Org. Chem. 1974, 39, 2361–2366. [Google Scholar] [CrossRef]
- Lewis, F.D.; Weigel, W. Excited State Properties of Donor−Acceptor Substituted trans-Stilbenes: The meta-Amino Effect. Phys. Chem. A 2000, 104, 8146–8153. [Google Scholar] [CrossRef]
- Lewis, F.D.; Dykstra, R.E.; Gould, I.R.; Farid, S. Cage escape yields and direct observation of intermediates in photoinduced electron-transfer reactions of cis- and trans-stilbene. J. Phys. Chem. 1988, 92, 7042–7043. [Google Scholar] [CrossRef]
- Papper, V.; Pokholenko, O.; Wu, Y.; Zhou, Y.; Jianfeng, P.; Steele, T.W.; Marks, R.S. Novel Photochrome Aptamer Switch Assay (PHASA) for Adaptive Binding to Aptamers. J. Fluoresc. 2014, 24, 1581–1591. [Google Scholar] [CrossRef]
- Papper, V.; Pines, D.; Likhtenshtein, G.; Pines, E. Photophysical characterization of trans-4,4′-disubstituted stilbenes. J. Photochem. Photobiol. A Chem. 1997, 111, 87–96. [Google Scholar] [CrossRef]
- Lao, J.; Han, L.; Wu, Z.; Zhang, X.; Huang, Y.; Tang, Y.; Guo, T. Gold Nanoparticle-Functionalized Surface Plasmon Resonance Optical Fiber Biosensor: In Situ Detection of Thrombin With 1 n·M Detection Limit. J. Lightwave Technol. 2019, 37, 2748–2755. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Y.; Pokholenko, O.; Grimsrud, M.; Sham, Y.; Papper, V.; Marks, R.; Steele, T. Aptamer adaptive binding assessed by stilbene photoisomerization towards regenerating aptasensors. Sens. Actuators B Chem. 2018, 257, 245–255. [Google Scholar] [CrossRef]
- Lewis, G.N.; Magel, T.T.; Lipkin, D. The Absorption and Re-emission of Light by cis- and trans-Stilbenes and the Efficiency of their Photochemical Isomerization. J. Am. Chem. Soc. 1940, 62, 2973–2980. [Google Scholar] [CrossRef]
- Zechmeister, L.; McNeely, W.H. Separation of cis and trans Stilbenes by Application of the Chromatographic Brush Method. J. Am. Chem. Soc. 1942, 64, 1919–1921. [Google Scholar] [CrossRef]
- Mauser, H.; Gauglitz, G. Chapter 5—Applications of Kinetic Analysis to Photoreactions. In Photokinetics Theoretical Fundamentals and Applications; Comprehensive Chemical Kinetics Book Series; Mauser, H., Gauglitz, G., Eds.; Elsevier SCIENCE B.V.: Amsterdam, The Netherlands, 1998; Volume 36, pp. 299–471. [Google Scholar]
- Likhtenshtein, G.I.; Bishara, R.; Papper, V.; Uzan, B.; Fishov, I.; Gill, D.; Parola, A.H. Novel fluorescence-photochrome labeling method in the study of biomembrane dynamics. J. Biochem. Biophys. Methods 1996, 33, 117–133. [Google Scholar] [CrossRef]
- Moncalián, G.; Cabezón, E.; Alkorta, I.; Valle, M.; Moro, F.; Valpuesta, J.M.a.; Goñi, F.M.; de la Cruz, F. Characterization of ATP and DNA Binding Activities of TrwB, the Coupling Protein Essential in Plasmid R388 Conjugation. J. Biol. Chem. 1999, 274, 36117–36124. [Google Scholar] [CrossRef] [Green Version]
- Stead, S.L.; Ashwin, H.; Johnston, B.H.; Dallas, A.; Kazakov, S.A.; Tarbin, J.A.; Sharman, M.; Kay, J.; Keely, B.J. An RNA-Aptamer-Based Assay for the Detection and Analysis of Malachite Green and Leucomalachite Green Residues in Fish Tissue. Anal. Chem. 2010, 82, 2652–2660. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chi, H.; Wu, Y.; Marks, R.S.; Steele, T.W.J. Organic additives stabilize RNA aptamer binding of malachite green. Talanta 2016, 160, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Feng, P.; Han, Q.; Li, F.J. Photo-Driven Regeneration of G-quadruplex Aptasensor for Sensitively Detecting Thrombin. Anal. Chem. 2020, 92, 7419–7424. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.-J.; Liu, X.-G.; Yue, H.; Luo, Q.-Y.; Tang, H.-W.; Pang, D.-W. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosens. Bioelectron. 2012, 37, 61–67. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X.; Cao, W.; Sun, J.; Gao, F. Detection of thrombin based on fluorescence energy transfer between semiconducting polymer dots and bhq-labelled aptamers. Sensors 2018, 18, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, I.R.; Pica, A.; Merlino, A.; Mazzarella, L.; Sica, F. Duplex-quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer. Acta Crystallogr. 2013, 69, 2403–2411. [Google Scholar] [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Wang, Q.; Lei, J.; Liu, L.; Ju, H. Label-free triple-helix aptamer as sensing platform for “signal-on” fluorescent detection of thrombin. Talanta 2015, 132, 387–391. [Google Scholar] [CrossRef]
- Tasset, D.M.; Kubik, M.F.; Steiner, W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J. Mol. Biol. 1997, 272, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Macaya, R.F.; Waldron, J.A.; Beutel, B.A.; Gao, H.; Joesten, M.E.J. Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry 1995, 34, 4478–4492. [Google Scholar] [CrossRef]
- Irene, R.K.; Antonello, M.; Antonio, R.; Ettore, N.; Lelio, M.; Filomena, S. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity. Nucleic Acids Res. 2012, 40, 8119–8128. [Google Scholar]
Aptasensor | Calibration Curve | R2 | LOD | Kd |
---|---|---|---|---|
SITS-Thrombin15 3′ | y = −0.0103x + 0.269 | 0.991 | 0.416 μM | 4.98 μM |
SITS-Thrombin15 5′ | y = −0.0978x + 0.388 | 0.965 | 0.829 μM | 10.8 μM |
SITS-Thrombin29 3′ | y = −0.0259x + 0.270 | 0.964 | 0.310 μM | 0.180 μM |
SITS-Thrombin29 5′ | y = −0.0159x + 0.278 | 0.970 | 0.419 μM | 0.851 μM |
SITS-Thrombin27 3′ | y = −0.0252x + 0.248 | 0.984 | 0.272 μM | 0.437 μM |
SITS-Thrombin27 T6 | y = −0.0188x + 0.303 | 0.963 | 0.278 μM | 0.982 μM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Zhou, Q.; Wang, L.; Zhu, X.; Cui, K.; Peng, X.; Steele, T.W.J.; Chen, H.; Xu, H.; Zhou, Y. A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin. Materials 2021, 14, 6927. https://doi.org/10.3390/ma14226927
Zeng X, Zhou Q, Wang L, Zhu X, Cui K, Peng X, Steele TWJ, Chen H, Xu H, Zhou Y. A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin. Materials. 2021; 14(22):6927. https://doi.org/10.3390/ma14226927
Chicago/Turabian StyleZeng, Xinling, Qing Zhou, Liyan Wang, Xiaoxian Zhu, Kuiyan Cui, Xinsheng Peng, Terry W. J. Steele, Huizhi Chen, Hui Xu, and Yubin Zhou. 2021. "A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin" Materials 14, no. 22: 6927. https://doi.org/10.3390/ma14226927
APA StyleZeng, X., Zhou, Q., Wang, L., Zhu, X., Cui, K., Peng, X., Steele, T. W. J., Chen, H., Xu, H., & Zhou, Y. (2021). A Fluorescence Kinetic-Based Aptasensor Employing Stilbene Isomerization for Detection of Thrombin. Materials, 14(22), 6927. https://doi.org/10.3390/ma14226927