A Facile Design of Colourimetric Polyurethane Nanofibrous Sensor Containing Natural Indicator Dye for Detecting Ammonia Vapour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Electrospun Nanofibrous Mats
2.3. Characterization of the Electrospun Nanofibrous Mats
2.4. UV-Vis Analysis
2.5. Characterizations of the Colour Change Behaviour of Nanofibrous Mats
3. Result and Discussion
3.1. Characterizations of the Nanofibrous Mats
3.2. Results of UV-Vis Analysis
3.3. Colour Change Behaviour of the Electrospun Mats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoolaert, E.; Hoogenboom, R.; De Clerck, K. Colorimetric nanofibers as optical sensors. Adv. Funct. Mater. 2017, 27, 1702646. [Google Scholar] [CrossRef] [Green Version]
- Van der Schueren, L.; De Clerck, K. Coloration and application of pH-sensitive dyes on textile materials. Color. Technol. 2012, 128, 82–90. [Google Scholar] [CrossRef]
- Allied Analytics LLP, Sensor Market Outlook 2028. Available online: https://www.alliedmarketresearch.com/sensor-market (accessed on 19 August 2021).
- Alberti, G.; Zanoni, C.; Magnaghi, L.R.; Biesuz, R. Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8331. [Google Scholar] [CrossRef] [PubMed]
- Sholihah, W.; Listyarini, A.; Fitriana, R.; Imawan, C. A paper-based visual indicator for detection of ammonia using Ruellia simplex. IOP Conf. Ser. Mater. Sci. Eng. 2019, 496, 012050. [Google Scholar] [CrossRef]
- Listyarini, A.; Fauzia, V.; Imawan, C. A simple paper-based color change label using plant extracts for Ammonia gas detection. J. Phys. Conf. Ser. 2020, 1528, 012056. [Google Scholar] [CrossRef]
- Park, Y.K.; Oh, H.J.; Bae, J.H.; Lim, J.Y.; Lee, H.D.; Hong, S.I.; Son, H.S.; Kim, J.H.; Lim, S.J.; Lee, W. Colorimetric Textile Sensor for the Simultaneous Detection of NH3 and HCl Gases. Polymers 2020, 12, 2595. [Google Scholar] [CrossRef]
- Park, Y.K.; Oh, B.M.; Jo, A.R.; Han, J.H.; Lim, J.Y.; Oh, H.J.; Lim, S.J.; Kim, J.H.; Lee, W.S. Fabrication of colorimetric textile sensor based on rhodamine dye for acidic gas detection. Polymers 2020, 12, 431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, H.J.; Yeang, B.J.; Park, Y.K.; Choi, H.J.; Kim, J.H.; Kang, Y.S.; Bae, Y.; Kim, J.Y.; Lim, S.J.; Lee, W.; et al. Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers 2020, 12, 1585. [Google Scholar] [CrossRef]
- Rostami, S.G.; Bafqi, M.S.S.; Bagherzadeh, R.; Latifi, M.; Gorji, M. Multi-layer electrospun nanofiber mats with chemical agent sensor function. J. Ind. Text. 2015, 45, 467–480. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.; Lim, T.; Ma, Z. An Introduction to Electrospinning and Nanofibers; World Scientific Publishing, Co.: Singapore, 2005. [Google Scholar]
- Li, Y.; Abedalwafa, M.A.; Tang, L.; Li, D.; Wang, L. Chapter 18—Electrospun Nanofibers for Sensors. In Micro and Nano Technologies, Electrospinning: Nanofabrication and Applications, 1st ed.; Ding, B., Wang, X., Yu, J., Eds.; William Andrew: Amsterdam, The Netherlands, 2019; pp. 571–601. [Google Scholar]
- Huang, C.; Thomas, N.L. Fabrication of porous fibers via electrospinning: Strategies and applications. Polym. Rev. 2020, 60, 595–647. [Google Scholar] [CrossRef]
- Pakolpakçıl, A.; Draczynski, Z. Green approach to develop bee pollen-loaded alginate based nanofibrous mat. Materials 2021, 14, 2775. [Google Scholar] [CrossRef]
- Pakolpakçıl, A.; Draczynski, Z. Preparation and characterization of the advanced alginate-based nanofibrous nonwoven using EDC/NHS coupling agent by electrospinning. J. Text. Inst. 2021, 1–9. [Google Scholar] [CrossRef]
- Gu, Y.; Huang, J. Colorimetric detection of gaseous ammonia by polyaniline nanocoating of natural cellulose substances. Colloids Surf. A Physicochem. Eng. Asp. 2013, 433, 166–172. [Google Scholar] [CrossRef]
- Owyeung, R.E.; Panzer, M.J.; Sonkusale, S.R. Colorimetric gas sensing washable threads for smart textiles. Sci. Rep. 2019, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Ly, A.; Luo, Y.; Cavaillès, G.; Olivier, M.-G.; Debliquy, M.; Lahem, D. Ammonia sensor based on vapor phase polymerized polypyrrole. Chemosensors 2020, 8, 38. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T. Synthesis of novel coumarin-based acid vapochromic fluorescence dye showing change of both color and fluorescence emission spectrum for application to sensitive, reusable, and washable textile sensors. Text. Res. J. 2021, 91, 5–6. [Google Scholar] [CrossRef]
- Lee, J.; Jun, H.; Kubota, Y.; Kim, T. Synthesis of red fluorescent dye with acid gas sensitive optical properties and fabrication of a washable and wearable textile sensor. Text. Res. J. 2021, 91, 17–18. [Google Scholar] [CrossRef]
- Hong, T.; Choi, Y.; Lim, K.T.; Seo, K.; Jeong, S.M.; Ju, S. Elastic halochromic fiber as a reversible pH sensor. Adv. Mater. Technol. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Atav, R.; Akkuş, E.; Ergünay, U. Investigation of the Dyeability of Cotton Fabrics with a Halochromic Dye According to Exhaust and Padding Methods. J. Nat. Fibers 2021, 1–14. [Google Scholar] [CrossRef]
- Haq, S.U.; Aghajamali, M.; Hassanzade, H. Cost-effective and sensitive anthocyanin-based paper sensors for rapid ammonia detection in aqueous solutions. RSC Adv. 2021, 11, 24387–24397. [Google Scholar] [CrossRef]
- Nafady, A.; Al-Enizi, A.M.; Alothman, A.A.; Shaikh, S.F. Design and fabrication of green and sustainable vapochromic cellulose fibers embedded with natural anthocyanin for detection of toxic ammonia. Talanta 2021, 230, 122292. [Google Scholar] [CrossRef] [PubMed]
- Manesh, K.M.; Gopalan, A.I.; Lee, K.; Santhosh, P.; Song, K.; Lee, D. Fabrication of Functional Nanofibrous Ammonia Sensor. IEEE Trans. Nanotechnol. 2007, 6, 513–518. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, Z.; Chen, Y.; Zhang, J.; Wang, Q.; Huang, F.; Wei, Q. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2016, 494, 248–255. [Google Scholar] [CrossRef]
- Hoang, A.T.; Cho, Y.B.; Park, J.S.; Yang, Y.; Kim, Y.S. Sensitive naked-eye detection of gaseous ammonia based on dye-impregnated nanoporous polyacrylonitrile mats. Sens. Actuators B 2016, 230, 250–259. [Google Scholar] [CrossRef]
- Geltmeyer, J.; Vancoillie, G.; Steyaert, I.; Breyne, B.; Cousins, G.; Lava, K.; Hoogenboom, R.; De Buysser, K.; De Clerck, K. Dye modification of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing. Adv. Funct. Mater. 2016, 26, 5987–5996. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Cha, J.H.; Lim, J.Y.; Bae, J.; Lee, W.; Yoon, K.R.; Kim, C.; Jang, J.S.; Hwang, W.; Kim, D. Colorimetric Dye-Loaded Nanofiber Yarn: Eye-Readable and Weavable Gas Sensing Platform. ACS Nano 2020, 14, 16907–16918. [Google Scholar] [CrossRef]
- Schoolaert, E.; Merckx, R.; Becelaere, J.; Rijssegem, S.; Hoogenboom, R.; De Clerck, K. Eco-Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pH-Sensing Regime Based on 2-Ethyl-2-Oxazoline and 2-n-Butyl-2-Oxazoline Statistical Copolymers Functionalized with Alizarin Yellow R. Adv. Funct. Mater. 2021, 2106859. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakić, V.; Ulrih, N.P. Influence of pH on color variation and stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution. CyTA—J. Food 2021, 19, 174–182. [Google Scholar] [CrossRef]
- Saleem, M.Q.; Akhtar, S.; Imran, M.; Riaz, M.; Rauf, A.; Mubarak, M.S.; Bawazeer, S.; Bawazeer, S.S.; Hassanien, M.F. Antibacterial and anticancer characteristics of black carrot (Daucus Carota) extracts. J. Med. Spice Plants 2018, 22, 40–44. [Google Scholar]
- Montilla, E.C.; Arzaba, M.R.; Hillebrand, S.; Winterhalter, P. Anthocyanin composition of black carrot (daucus carota ssp. sativus var. atrorubens alef.) cultivars antonina, beta sweet, deep purple, and purple haze. J. Agric. Food Chem. 2011, 59, 3385–3390. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Acosta, G.; Ramos-Jacques, A.L.; Molina, G.A.; Maya-Cornejo, J.; Esparza, R.; Hernandez-Martinez, A.R.; Sánchez-González, I.; Estevez, M. Stability Analysis of Anthocyanins Using Alcoholic Extracts from Black Carrot (Daucus Carota ssp. Sativus Var. Atrorubens Alef.). Molecules 2018, 23, 2744. [Google Scholar] [CrossRef] [Green Version]
- Goksen, G.; Ekiz, H.I. Electrospun poly (vinyl alcohol) with anthocyanins from black carrot nanofibrous film for pH biosensor applications. J. Biotechnol. 2018, 280, S26. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr. Polym. 2019, 222, 115030. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.M.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. Int. J. Biol. Macromol. 2020, 153, 15. [Google Scholar]
- Pakolpakçıl, A.; Osman, B.; Özer, E.T.; Şahan, Y.; Becerir, B.; Göktalay, G.; Karaca, E. Halochromic composite nanofibrous mat for wound healing monitoring. Mater. Res. Express 2019, 6, 1250c3. [Google Scholar] [CrossRef]
- Basf, Elastollan® Technical Data Sheet. Available online: http://www.elastollan.basf.us/pdf/1185AW.pdf (accessed on 1 March 2021).
- Akduman, C.; Kumbasar, E.P.A. Electrospun polyurethane nanofibers. In Aspects of Polyurethanes; Yilmaz, F., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Mohraz, M.H.; Golbabaei, F.; Yu, I.J.; Mansournia, M.A.; Zadeh, A.S.; Dehghan, S.F. Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications. Int. J. Environ. Sci. Technol. 2019, 16, 681–694. [Google Scholar] [CrossRef]
- Mistry, P.; Chhabra, R.; Muke, S.; Narvekar, A.; Sathaye, S.; Jain, R.; Dandekar, P. Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Mat. Sci. Eng. C 2021, 119, 111316. [Google Scholar] [CrossRef]
- Kim, Y.N.; Ha, Y.M.; Park, J.E.; Kim, Y.O.; Jo, J.Y.; Han, H.; Lee, D.C.; Kim, J.; Jung, Y.C. Flame retardant, antimicrobial, and mechanical properties of multifunctional polyurethane nanofibers containing tannic acid-coated reduced graphene oxide. Polym. Test. 2021, 93, 107006. [Google Scholar] [CrossRef]
- Mrunalini, K.G.; Pudke, S.P.; Sharma, C.S. Neem oil encapsulated electrospun polyurethane nanofibrous bags for seed storage: A step toward sustainable agriculture. J. Appl. Polym. Sci. 2021, 138, 11. [Google Scholar]
- Wang, Y.; Li, W.; Zhou, Y.; Jiang, L.; Ma, J.; Chen, S.; Jerrams, S.; Zhou, F. Fabrication of high-performance wearable strain sensors by using CNTs-coated electrospun polyurethane nanofibers. J. Mater. Sci. 2020, 55, 12592–12606. [Google Scholar] [CrossRef]
- Fdhal, N.; Kyan, M.; Androutsos, D.; Sharma, A. Color Space Transformation from RGB to CIELAB Using Neural Networks. In Advances in Multimedia Information Processing—PCM 2009 Lecture Notes in Computer Science, 5879; Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X., Eds.; Springer: Heidelberg/Berlin, Germany, 2009. [Google Scholar]
- Nirmala, R.; Nam, K.T.; Navamathavan, R.; Park, S.J.; Kim, H.Y. Hydroxyapatite mineralization on the calcium chloride blended polyurethane nanofiber via biomimetic method. Nanoscale Res. Lett. 2011, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, A.; Raheja, A.; Natarajan, T.S.; Chandra, T.S. Development of Universal pH Sensing Electrospun Nanofibers. Sens. Actuators B 2012, 161, 1097–1101. [Google Scholar] [CrossRef]
- Pakolpakçıl, A.; Karaca, E.; Becerir, B. Investigation of a natural pH-indicator dye for nanofibrous wound dressings. IOP Conf. Ser. Mater. Sci. Eng. 2018, 460, 012020. [Google Scholar] [CrossRef]
- Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA nanocomposite films containing black carrot anthocyanin and bentonite nanoclays with improved mechanical, thermal and antibacterial properties. Prog. Org. Coat. 2019, 127, 338–347. [Google Scholar] [CrossRef]
- Zeb, A. Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis; Springer International Publishing: Heidelberg, Germany, 2021. [Google Scholar]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.D.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Tang, B.; He, Y.; Liu, J.; Zhang, J.; Li, J.; Zhou, J.; Ye, Y.; Wang, J.; Wang, X. Kinetic investigation into pH-dependent color of anthocyanin and its sensing performance. Dyes Pigm. 2019, 170, 107643. [Google Scholar] [CrossRef]
- Pakolpakçıl, A.; Osman, B.; Göktalay, G.; Özer, E.T.; Şahan, Y.; Becerir, B.; Karaca, E. Design and in vivo evaluation of alginate based pH-sensing electrospun wound dressing containing anthocyanins. J. Polym. Res. 2021, 28, 50. [Google Scholar] [CrossRef]
Sample | Colour | L* | a* | b* | ΔE* |
---|---|---|---|---|---|
Beginning | 43.8 ± 4.2 | 22.9 ± 1.7 | −1.9 ± 0.6 | 24.2 | |
Exposed to the NH3 Vapour | 41.1 ± 4.7 | −0.1 ± 1.8 | −8.9 ± 0.1 | - | |
After recovered | 40.3 ± 2.7 | 8.9 ± 0.1 | −4.4 ± 1.0 | 10.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakolpakçıl, A.; Draczyński, Z. A Facile Design of Colourimetric Polyurethane Nanofibrous Sensor Containing Natural Indicator Dye for Detecting Ammonia Vapour. Materials 2021, 14, 6949. https://doi.org/10.3390/ma14226949
Pakolpakçıl A, Draczyński Z. A Facile Design of Colourimetric Polyurethane Nanofibrous Sensor Containing Natural Indicator Dye for Detecting Ammonia Vapour. Materials. 2021; 14(22):6949. https://doi.org/10.3390/ma14226949
Chicago/Turabian StylePakolpakçıl, Ayben, and Zbigniew Draczyński. 2021. "A Facile Design of Colourimetric Polyurethane Nanofibrous Sensor Containing Natural Indicator Dye for Detecting Ammonia Vapour" Materials 14, no. 22: 6949. https://doi.org/10.3390/ma14226949
APA StylePakolpakçıl, A., & Draczyński, Z. (2021). A Facile Design of Colourimetric Polyurethane Nanofibrous Sensor Containing Natural Indicator Dye for Detecting Ammonia Vapour. Materials, 14(22), 6949. https://doi.org/10.3390/ma14226949