Effects of Immediate and Delayed Cementations for CAD/CAM Resin Block after Alumina Air Abrasion on Adhesion to Newly Developed Resin Cement
Abstract
1. Introduction
2. Materials and Methods
2.1. Micro Tensile Bond Strength Test (μTBS)
2.2. Failure Mode Analysis
2.3. Scanning Electron Microscope/Energy Dispersive X-ray Spectrometry (SEM/EDS) Analysis
2.4. Light Intensity Measurements (mW/cm2)
2.5. Surface Roughness Measurements (Sa)
2.6. Water Sorption Measurements
2.7. Statistical Analysis
3. Results
3.1. Micro Tensile Bond Strength (μTBS)
3.2. SEM/EDS Analysis
3.3. Light Intensity Measurements (mW/cm2)
3.4. Surface Roughness Measurements (Sa)
3.5. Water Sorption Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asmussen, E.; Peutzfeldt, A. The effect of secondary curing of resin composite on the adherence of resin cement. J. Adhes. Dent. 2000, 2, 315–318. [Google Scholar] [PubMed]
- Latta, M.A.; Barkmeier, W.W. Bond strength of a resin cement to a cured composite inlay material. J. Prosthet. Dent. 1994, 72, 189–193. [Google Scholar] [CrossRef]
- Shortall, A.C.; Baylis, R.L.; Wilson, H.J. Composite inlay/luting resin bond strength: Surface treatment effects. J. Dent. 1996, 24, 129–135. [Google Scholar] [CrossRef]
- Imamura, G.M.; Reinhardt, J.W.; Boyer, D.B.; Swift, E.J., Jr. Enhancement of resin bonding to heat-cured composite resin. Oper. Dent. 1996, 21, 249–256. [Google Scholar]
- Ferracane, J.L.; Hilton, T.J. Polymerization stress—Is it clinically meaningful? Dent. Mater. 2016, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Giordano, R. Materials for chairside CAD/CAM-produced restorations. J. Am. Dent. Assoc. 2006, 137, 14S–21S. [Google Scholar] [CrossRef] [PubMed]
- Ludovichetti, F.S.; Trindade, F.Z.; Werner, A.; Kleverlaan, C.J.; Fonseca, R.G. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J. Prosthet. Dent. 2018, 120, 318.e1–318.e8. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar] [CrossRef]
- Ali, A.; Takagaki, T.; Naruse, Y.; Abdou, A.; Nikaido, T.; Ikeda, M.; Tagami, J. The effect of elapsed time following alumina blasting on adhesion of CAD/CAM resin block to dentin. Dent. Mater. J. 2019, 38, 354–360. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent. Mater. 2017, 33, e124–e135. [Google Scholar] [CrossRef]
- Higashi, M.; Matsumoto, M.; Kawaguchi, A.; Miura, J.; Minamino, T.; Kabetani, T.; Takeshige, F.; Mine, A.; Yatani, H. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization. Dent. Mater. J. 2016, 35, 21–28. [Google Scholar] [CrossRef]
- Kawaguchi-Uemura, A.; Mine, A.; Matsumoto, M.; Tajiri, Y.; Higashi, M.; Kabetani, T.; Hagino, R.; Imai, D.; Minamino, T.; Miura, J.; et al. Adhesion procedure for CAD/CAM resin crown bonding: Reduction of bond strengths due to artifi cial saliva contamination. J. Prosthodont. Res. 2018, 62, 177–183. [Google Scholar] [CrossRef]
- El Zohairy, A.A.; De Gee, A.J.; Mohsen, M.M.; Feilzer, A.J. Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks. Dent. Mater. 2003, 19, 575–583. [Google Scholar] [CrossRef]
- da Costa, T.R.; Serrano, A.M.; Atman, A.P.F.; Loguercio, A.D.; Reis, A. Durability of composite repair using different surface treatments. J. Dent. 2012, 40, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Yoshida, Y.; Van Meerbeek, B. Silane-coupling effect of a silane-containing self-adhesive composite cement. Dent. Mater. 2020, 36, 914–926. [Google Scholar] [CrossRef]
- Okamura, K.; Koizumi, H.; Kodaira, A.; Nogawa, H.; Yoneyama, T. Surface properties and gloss of CAD/CAM composites after toothbrush abrasion testing. J. Oral. Sci. 2019, 61, 358–363. [Google Scholar] [CrossRef]
- Randolph, L.D.; Palin, W.M.; Leloup, G.; Leprince, J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent. Mater. 2016, 32, 1586–1599. [Google Scholar] [CrossRef]
- Gomes de Araújo-Neto, V.; Sebold, M.; Fernandes de Castro, E.; Feitosa, V.P.; Giannini, M. Evaluation of physico-mechanical properties and filler particles characterization of conventional, bulk-fill, and bioactive resin-based composites. J. Mech. Behav. Biomed. Mater. 2021, 115, 104288. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, H.A.; Kriven, W.M.; Casanova, H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 274–282. [Google Scholar] [CrossRef]
- Shimoe, S.; Peng, T.Y.; Otaku, M.; Tsumura, N.; Iwaguro, S.; Satoda, T. Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material. J. Prosthet. Dent. 2019, 122, 491.e1–491.e9. [Google Scholar] [CrossRef]
- Dartora, G.; Rocha Pereira, G.K.; Varella de Carvalho, R.; Zucuni, C.P.; Valandro, L.F.; Cesar, P.F.; Caldas, R.A.; Bacchi, A. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: Fatigue performance and stress distribution. J. Mech. Behav. Biomed. Mater. 2019, 100, 103401. [Google Scholar] [CrossRef]
- Loomans, B.A.; Mesko, M.E.; Moraes, R.R.; Ruben, J.; Bronkhorst, E.M.; Pereira-Cenci, T.; Huysmans, M.C. Effect of different surface treatment techniques on the repair strength of indirect composites. J. Dent. 2017, 59, 18–25. [Google Scholar] [CrossRef]
- Nagasawa, Y.; Hibino, Y.; Eda, Y.; Nakajima, H. Effect of surface treatment of CAD/CAM resin composites on the shear bond strength of self-adhesive resin cement. Dent. Mater. J. 2021, 40, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Bayazıt, E.Ö. Microtensile Bond Strength of Self-Adhesive Resin Cements to CAD/CAM Resin-Matrix Ceramics Prepared with Different Surface Treatments. Int. J. Prosthodont. 2019, 32, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Miotti, L.L.; Follak, A.C.; Montagner, A.F.; Pozzobon, R.T.; da Silveira, B.L.; Susin, A.H. Is Conventional Resin Cement Adhesive Performance to Dentin Better Than Self-adhesive? A Systematic Review and Meta-Analysis of Laboratory Studies. Oper. Dent. 2020, 45, 484–495. [Google Scholar] [CrossRef]
- Tsukagoshi, K.; Hirota, M.; Nomoto, R.; Hayakawa, T. Bond strength and computational analysis for silane coupling treatments on the adhesion of resin block for CAD/CAM crowns. Dent. Mater. J. 2020, 39, 844–854. [Google Scholar] [CrossRef]
- Mine, A.; Kabetani, T.; Kawaguchi-Uemura, A.; Higashi, M.; Tajiri, Y.; Hagino, R.; Imai, D.; Yumitate, M.; Ban, S.; Matsumoto, M.; et al. Effectiveness of current adhesive systems when bonding to CAD/CAM indirect resin materials: A review of 32 publications. Jpn. Dent. Sci. Rev. 2019, 55, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Seki, N.; Nakajima, M.; Kishikawa, R.; Hosaka, K.; Foxton, R.M.; Tagami, J. The influence of light intensities irradiated directly and indirectly through resin composite to self-etch adhesives on dentin bonding. Dent. Mater. J. 2011, 30, 315–322. [Google Scholar] [CrossRef][Green Version]
- Moraes, R.R.; Correr-Sobrinho, L.; Sinhoreti, M.A.; Puppin-Rontani, R.M.; Ogliari, F.A.; Piva, E. Light-activation of resin cement through ceramic: Relationship between irradiance intensity and bond strength to dentin. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85, 160–165. [Google Scholar] [CrossRef]
- Tashiro, H.; Inai, N.; Nikaido, T.; Tagami, J. Effects of light intensity through resin inlays on the bond strength of dual-cured resin cement. J. Adhes. Dent. 2004, 6, 233–238. [Google Scholar]
- Babich, V.F.; Lipatov, Y.S.; Todosijchuk, T.T. Filler debonding in particulate-filled composites. J. Adhes. 1996, 55, 317–327. [Google Scholar] [CrossRef]
- Zanchi, C.H.; Ogliari, F.A.; Silva, R.M.; Lund, R.G.; Machado, H.H.; Prati, C.; Carreño, N.L.; Piva, E. Effect of the silane concentration on the selected properties of an experimental microfilled composite resin. Appl. Adhes. Sci. 2015, 3, 27. [Google Scholar] [CrossRef]
- Tarumi, H.; Torii, M.; Tsuchitani, Y. Relationship between particle size of barium glass filler and water sorption of light-cured composite resin. Dent. Mater. J. 1995, 14, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nagano, D.; Nakajima, M.; Takahashi, M.; Ikeda, M.; Hosaka, K.; Sato, K.; Prasansuttiporn, T.; Foxton, R.M.; Tagami, J. Effect of Water Aging of Adherend Composite on Repair Bond Strength of Nanofilled Composites. J. Adhes. Dent. 2018, 20, 425–433. [Google Scholar]
Material | Lot No. | Composition | Application Procedures |
---|---|---|---|
KATANA Avencia Block | 000402 | Mixed filler with colloidal silica (40 nm) and aluminum oxide (20 nm), cured resins consisting of methacrylate monomer (Copolymer of UDMA and other methacrylate monomers), pigments, filler content 62 (wt%) * | |
KATANA Avencia P Block | 000130 | barium glass filler, silica glass filler, UDMA, pigments, others, filler content 82 (wt%) * | |
SA Luting Plus | 450163 | Bis-GMA, TEGDMA, methacrylic acid type monomer, MDP, barium glass, silica type microfiller photopolymerization catalyst, chemical polymerization catalyst, surface treated sodium fluoride * | Apply it by auto-mix syringe on the CRB surface, then light cure for 40 s or chemical cure for 30 min in the dark. |
SA Luting Multi | T180219 | MDP, Bis-GMA, TEGDMA, HEMA, silica glass filler, hydrophobic methacrylic acid monomer, barium glass filler, Aluminum oxide, NAF, Newly developed silane coupling agent * | Apply it by auto-mix syringe on the CRB surface, then light cure for 40 s or chemical cure for 30 min in the dark. |
K-etchant gel | 4Q0078 | Water, 40%phosphoric acid, pigment, thickener * | Apply on the CRB surface for 20 s, rinse with water for 10 s and air-dry gently. |
Clearfil Ceramic Primer Plus | A50030 | Silane coupling agent γ-MPTS, MDP, ethanol * | Apply on the CRB for 20 s and air-dry gently |
Curing Methods | CAD/CAM Resin Composite Blocks | Cementations | Resin Cements | μTBS | Frequency in Mode of Failure (A/B) |
---|---|---|---|---|---|
CC | A block | Immediate | Multi | 73.52 a (6.49) | (0/20 a) |
Plus | 70.19 b (8.87) | (0/20 b) | |||
Delay | Multi | 43.46 a,c (12.91) | (20/0 a) | ||
Plus | 51.03 b,d (7.56) | (19/1 b) | |||
P block | Immediate | Multi | 64.33 (7.52) | (4/16 c) | |
Plus | 60.86 e (7.19) | (0/20 d) | |||
Delay | Multi | 61.21 c (9.14) | (20/0 c) | ||
Plus | 65.2 d (7.24) | (18/2 d) | |||
LC | A block | Immediate | Multi | 68.48 f (6.74) | (2/18 e) |
Plus | 69.77 g (9.8) | (3/17 f) | |||
Delay | Multi | 42.31 f,h (6.36) | (20/0 e) | ||
Plus | 42.24 g (6.55) | (20/0 f) | |||
P block | Immediate | Multi | 68.05 (8.49) | (7/13 g) | |
Plus | 71.53 e (11.89) | (3/17 h) | |||
Delay | Multi | 64.39 h (8.29) | (20/0 g) | ||
Plus | 63.64 (7.42) | (19/1 h) |
CAD/CAM Resin Composite Blocks | Elements Formula | ||||||
---|---|---|---|---|---|---|---|
C | O | Al | Si | Ba | Toatl | ||
Atom (%) | A block | 44.95 | 40.38 | 0.31 | 14.36 | 0.00 | 100.00 |
P block | 33.58 | 49.65 | 2.93 | 11.47 | 2.37 | 100.00 | |
mass (%) | A block | 33.79 | 40.44 | 0.52 | 25.24 | 0.00 | 100.00 |
P block | 20.97 | 41.29 | 4.11 | 16.74 | 16.88 | 100.00 |
CAD/CAM Resin Composite Blocks | Light Intensity (mW/cm2) |
---|---|
A block | 19.22 (4.06) A |
P block | 71.00 (4.36) A |
Control | 677.89 (4.96) A |
CAD/CAM Resin Composite Blocks | Surface Roughness (Sa) |
---|---|
A block | 1.37 (0.09) |
P block | 1.47 (0.12) |
CAD/CAM Resin Composite Blocks | Water Sorption (%) | |||
---|---|---|---|---|
1 Day | 3 Days | 5 Days | 1 Week | |
A block | 0.07 (0.01) a,A | 0.11 (0.01) b,A | 0.19 (0.02) c,A | 0.27 (0.03) d,A |
P block | 0.03 (0.01) a,B | 0.05 (0.01) b,B | 0.09 (0.01) c,B | 0.12 (0.01) d,B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, A.; Ikeda, M.; Takagaki, T.; Nikaido, T.; Sadr, A.; Shimada, Y.; Tagami, J. Effects of Immediate and Delayed Cementations for CAD/CAM Resin Block after Alumina Air Abrasion on Adhesion to Newly Developed Resin Cement. Materials 2021, 14, 7058. https://doi.org/10.3390/ma14227058
Chin A, Ikeda M, Takagaki T, Nikaido T, Sadr A, Shimada Y, Tagami J. Effects of Immediate and Delayed Cementations for CAD/CAM Resin Block after Alumina Air Abrasion on Adhesion to Newly Developed Resin Cement. Materials. 2021; 14(22):7058. https://doi.org/10.3390/ma14227058
Chicago/Turabian StyleChin, Akane, Masaomi Ikeda, Tomohiro Takagaki, Toru Nikaido, Alireza Sadr, Yasushi Shimada, and Junji Tagami. 2021. "Effects of Immediate and Delayed Cementations for CAD/CAM Resin Block after Alumina Air Abrasion on Adhesion to Newly Developed Resin Cement" Materials 14, no. 22: 7058. https://doi.org/10.3390/ma14227058
APA StyleChin, A., Ikeda, M., Takagaki, T., Nikaido, T., Sadr, A., Shimada, Y., & Tagami, J. (2021). Effects of Immediate and Delayed Cementations for CAD/CAM Resin Block after Alumina Air Abrasion on Adhesion to Newly Developed Resin Cement. Materials, 14(22), 7058. https://doi.org/10.3390/ma14227058