Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Collection, Alternatives and Criteria
2.2. Cluster Analysis
2.3. Technique for Order of Preference by Similarity to Ideal Solution
- Construction of normalized decision matrix
- 2.
- Construction of the weighted normalized decision matrix
- 3.
- Determination of positive ideal (A*) and negative ideal (A−) solutions
- 4.
- Calculation of the separation measures for each alternative
- 5.
- Calculation of the relative closeness to the ideal solution
- 6.
- Arrangement of scenarios in order of closest to ideal to furthest from ideal—creation of the ranking
3. Results
3.1. The Greenness Assessment of MI-SPE Technique for Pesticide Determination
3.2. The Greenness Assessment of Magnetic MIP Technique for Pesticide Selective Recognition from Food and Environmental Samples
3.3. Quantum and Carbon Dots as a New “Greenest” Solution in the Field of Pesticide Detection Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nian, K.; Zheng, L.; Cheng, X. Preparation of molecularly imprinted polymers for recognition and extraction of benzoylureas from apple samples. Polym. Plast. Technol. Mater. 2020, 59, 1204–1217. [Google Scholar] [CrossRef]
- Ansari, S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. Trends Anal. Chem. 2017, 90, 89–106. [Google Scholar] [CrossRef]
- Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. Trends Anal. Chem. 2013, 45, 169–181. [Google Scholar] [CrossRef]
- Köse, K.; Kehribar, D.Y.; Uzun, L. Molecularly imprinted polymers in toxicology: A literature survey for the last 5 years. Environ. Sci. Pollut. Res. 2021, 28, 35437–35471. [Google Scholar] [CrossRef]
- Ansari, S.; Karimi, M. Novel developments and trends of analytical methods for drug analysis in biological and environmental samples by molecularly imprinted polymers. Trends Anal. Chem. 2017, 89, 146–162. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, W.; Guo, C.; Zhang, J.; Yu, L.; Zhang, G.; Wang, X.; Fang, G.; Sun, D. Magnetic molecularly imprinted electrochemical sensors: A review. Anal. Chim. Acta 2020, 1106, 1–21. [Google Scholar] [CrossRef]
- Bhogal, S.; Kaur, K.; Malik, A.K.; Sonne, C.; Lee, S.S.; Kim, K.H. Core-shell structured molecularly imprinted materials for sensing applications. Trends Anal. Chem. 2020, 133, 116043. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Razavi, N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends Anal. Chem. 2015, 73, 81–90. [Google Scholar] [CrossRef]
- Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers-based microextraction techniques. Trends Anal. Chem. 2019, 118, 574–586. [Google Scholar] [CrossRef]
- Akashe, M.M.; Pawade, U.V.; Nikam, A.V. Classification of pesticides: A review. Int. J. Res. Ayurveda Pharm. 2018, 9, 144–150. [Google Scholar] [CrossRef]
- Ma, F.; Wu, R.; Li, P.; Yu, L. Analytical approaches for measuring pesticides, mycotoxins and heavy metals in vegetable oils: A review: Updated methods for analyzing contaminants in oil. Eur. J. Lipid Sci. Technol. 2016, 118, 339–352. [Google Scholar] [CrossRef]
- Fenik, J.; Tankiewicz, M.; Biziuk, M. Properties and determination of pesticides in fruits and vegetables. Trends Anal. Chem. 2011, 30, 814–826. [Google Scholar] [CrossRef]
- Chowdhury, M.A.Z.; Fakhruddin, A.N.M.; Islam, M.N.; Moniruzzaman, M.; Gan, S.H.; Alam, M.K. Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography–mass spectrometry. Food Control 2013, 34, 457–465. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.; Cheng, Y.; Yan, Z.; Li, J.; Bacha, S.A.S.; Mushtaq, A.; Zhang, H. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst 2018, 143, 3971–3989. [Google Scholar] [CrossRef]
- Boulanouar, S.; Combes, A.; Mezzache, S.; Pichon, V. Synthesis and application of molecularly imprinted silica for the selective extraction of some polar organophosphorus pesticides from almond oil. Anal. Chim. Acta 2018, 1018, 35–44. [Google Scholar] [CrossRef]
- Boulanouara, S.; Mezzache, S.; Combèsa, A.; Pichon, V. Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 2018, 176, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudpour, M.; Torbati, M.; Mousavi, M.M.; de la Guardia, M.; Dolatabadi, J.E.N. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. Trends Anal. Chem. 2020, 129, 115943. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. Trends Anal. Chem. 2020, 132, 116041. [Google Scholar] [CrossRef]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Aylaz, G.; Kuhn, J.; Lau, E.C.H.T.; Yeung, C.C.; Roy, V.A.L.; Duman, M.; Yiu, H.H.P. Recent developments on magnetic molecular imprinted polymers (MMIPs) for sensing, capturing, and monitoring pharmaceutical and agricultural pollutants. J. Chem. Technol. Biotechnol. 2021, 96, 1151–1160. [Google Scholar] [CrossRef]
- Trebuňa, P.; Halčinová, J. Experimental modelling of the cluster analysis processes. Procedia Eng. 2012, 48, 673–678. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.M.; Sorribes-Soriano, A.; Jafari, M.T.; Nourbakhsh, F.; Esteve-Turrillas, F.A.; Armenta, S.; Herrero-Martínez, J.M.; de la Guardia, M. Uptake and translocation monitoring of imidacloprid to chili and tomato plants by molecularly imprinting extraction—ion mobility spectrometry. Michrochem. J. 2019, 144, 195–202. [Google Scholar] [CrossRef]
- Zuo, H.G.; Zhu, J.X.; Zhan, C.R.; Shi, L.; Xing, M.; Guo, P.; Ding, Y.; Yang, H. Preparation of malathion MIP-SPE and its application in environmental analysis. Environ. Monit. Assess. 2015, 187, 394. [Google Scholar] [CrossRef]
- Martins, N.; Carreiro, E.P.; Locati, A.; Ramalho, J.P.P.; Cabrita, M.J.; Burke, A.J.; Garcia, R. Design and development of molecularly imprinted polymers for theselective extraction of deltamethrin in olive oil: An integratedcomputational-assisted approach. J. Chromatogr. A 2015, 1409, 1–10. [Google Scholar] [CrossRef]
- Boulanouar, S.; Combès, A.; Mezzache, S.; Pichon, V. Synthesis and application of molecularly imprinted polymers for theselective extraction of organophosphorus pesticides from vegetableoils. J. Chromatogr. A 2017, 1513, 59–68. [Google Scholar] [CrossRef]
- Arias, P.G.; Martínez-Pérez-Cejuela, H.; Combès, A.; Pichon, V.; Pereira, E.; Herrero-Martínez, J.M.; Bravo, M. Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection. J. Chromatogr. A 2020, 1626, 461346. [Google Scholar] [CrossRef]
- He, J.; Song, L.; Chen, S.; Li, Y.; Wei, H.; Zhao, D.; Gu, K.; Zhang, S. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey. Food Chem. 2015, 187, 331–337. [Google Scholar] [CrossRef]
- Sanagi, M.M.; Salleh, S.; Ibrahim, W.A.W.; Naim, A.A.; Hermawan, D.; Miskam, M.; Hussain, I.; Aboul-Enein, H.Y. Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J. Food Compos. Anal. 2013, 32, 155–161. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.-t.; Shu, Y.; Ma, H.-h.; Cao, X.-y. Detection of Organophosphorus Pesticide Residues in Leaf Lettuce and Cucumber Through Molecularly Imprinted Solid-Phase Extraction Coupled to Gas Chromatography. Food Anal. Methods 2017, 10, 3452–3461. [Google Scholar] [CrossRef]
- Chen, J.; Bai, L.-Y.; Liu, K.-F.; Liu, R.-Q.; Zhang, Y.-P. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization. Int. J. Mol. Sci. 2014, 15, 574–587. [Google Scholar] [CrossRef]
- Bakas, I.; Oujji, N.B.; Moczko, E.; Istamboulie, G.; Piletsky, S.; Piletska, E.; Ait-Addi, E.; Ait-Ichou, I.; Noguer, T.; Rouillon, R. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil. J. Chromatogr. A 2013, 1274, 13–18. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Chen, J.; Gao, J.; Yu, S.; Wang, X. Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers. Microchem. J. 2020, 157, 105052. [Google Scholar] [CrossRef]
- Díaz-Alvarez, M.; Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples. Anal. Chim. Acta. 2019, 1045, 117–122. [Google Scholar] [CrossRef]
- He, Y.; Zhao, F.; Zhang, C.; Abd EI-Aty, A.M.; Baranenko, D.A.; Hacimüftüoğlu, A.; She, Y. Assessment of magnetic core-shell mesoporous molecularly imprinted polymers for selective recognition of triazoles residual levels in cucumber. J. Chromatogr. B 2019, 1132, 121811. [Google Scholar] [CrossRef]
- Abdulhussein, A.Q.; Jamil, A.K.M.; Bakar, N.K. A Magnetic molecularly imprinted polymer nanoparticles for the extraction and clean-up of thiamethoxam and thiacloprid in light and dark honey. Food Chem. 2021, 359, 129936. [Google Scholar] [CrossRef]
- Gao, L.; Wang, J.; Li, X.; Yan, Y.; Li, C.; Pan, J. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition. Anal. Bioanal. Chem. 2014, 406, 7213–7220. [Google Scholar] [CrossRef]
- Wei, M.; Yan, X.; Liu, S.; Liu, X. Preparation and evaluation of superparamagnetic core–shell dummy molecularly imprinted polimer for recognition and extraction of organophosphorus pesticide. J. Mater. Sci. 2018, 53, 4897–4912. [Google Scholar] [CrossRef]
- Ma, G.; Chen, L. Determination of Chlorpyrifos in Rice Based on Magnetic Molecularly Imprinted Polymers Coupled with High-Performance Liquid Chromatography. Food Anal. Methods 2014, 7, 377–388. [Google Scholar]
- Xu, S.; Guo, C.; Li, Y.; Yu, Z.; Wei, C.; Tang, Y. Methyl parathion imprinted polymer nanoshell coated on themagnetic nanocore for selective recognition and fast adsorption andseparation in soils. J. Hazard. Mat. 2014, 264, 34–41. [Google Scholar] [CrossRef]
- Liu, B.; Han, M.; Guan, G.; Wang, S.; Liu, R.; Zhang, Z. Highly-Controllable Molecular Imprinting at Superparamagnetic Iron Oxide Nanoparticles for Ultrafast Enrichment and Separation. J. Phys. Chem. C 2011, 115, 17320–17327. [Google Scholar] [CrossRef]
- Chen, F.F.; Xie, X.Y.; Shi, Y.P. Preparation of magnetic molecularly imprinted polymer for selectiverecognition of resveratrol in wine. J. Chromatogr. A 2013, 1300, 112–118. [Google Scholar] [CrossRef]
- Gao, L.; Piao, C.; Chen, L. Determination of Acephate in Vegetables by Magnetic Molecularly Imprinted Polymer Isolation Coupled with High-Performance Liquid Chromatography. Anal. Lett. 2015, 48, 752–765. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Wong, A.; Foguel, M.V.; Gonçalves, L.M.; Gurgo, M.I.P.; Sotomayor, M.P.T. Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. React. Funct. Polym. 2018, 122, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Ghani, S.M.; Rezaei, B.; Jamei, H.R.; Ensafi, A.A. Preparation and comparison of molecularly imprinted polimer fluorimetric nanoprobe based on polymer dots and carbon quantum dots for determination of acetamiprid using response Surface method. Microchim. Acta 2020, 187, 294. [Google Scholar] [CrossRef]
- Amjadi, M.; Jalili, R. Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens. Bioelectron. 2017, 96, 121–126. [Google Scholar] [CrossRef]
- Li, X.; Jiao, H.F.; Shi, X.Z.; Sun, A.; Wang, X.; Chai, J.; Li, D.X.; Chen, J. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens. Bioelectron. 2018, 99, 268–273. [Google Scholar] [CrossRef]
- Ren, X.; Chen, L. Preparation of molecularly imprinted polymer coated quantum dots to detect nicosulfuron in water samples. Anal. Bioanal. Chem. 2015, 407, 8087–8095. [Google Scholar] [CrossRef]
- Shirani, M.P.; Rezaei, B.; Ensafi, A.A. A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 210, 36–43. [Google Scholar] [CrossRef]
- Zhang, W.; Han, Y.; Chen, X.; Luo, X.; Wang, J.; Yue, T.; Li, T. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem. 2017, 232, 145–154. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, Y.; Guo, Y.; Yu, L.; Zhang, G.; Zhai, D.; Wang, X.; Sun, X. Fluorometric microplate-based dimethoate assay using CdSe/ZnS quantum dots coated with a molecularly imprinted polymer. Microchim. Acta 2019, 186, 589. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Cheng, J. Molecularly Imprinted Silica Nanospheres Embedded CdSe Quantum Dots for Highly Selective and Sensitive Optosensing of Pyrethroids. Chem. Mater. 2010, 22, 2451–2457. [Google Scholar] [CrossRef]
- Sun, J.; Chen, C.; Zhang, Y.; Sun, X. A novel fluorescent molecularly imprinted polymer SiO2@CdTe QDs@MIP for paraquat detection and adsorption. Luminescence 2021, 36, 345–352. [Google Scholar] [CrossRef] [PubMed]
- National Fire Protection Association. Standard System for the Identification of the Hazards of Materials for Emergency Response. Available online: https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=704 (accessed on 22 September 2021).
- Massart, D.L.; Kaufman, L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis; Wiley Interscience: New York, NY, USA, 1983. [Google Scholar]
- Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Hwang, C.L.; Lai, Y.J.; Liu, T.Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Bystrzanowska, M.; Tobiszewski, M. How can analysts use multicriteria decision analysis? Trends Anal. Chem. 2018, 105, 98–105. [Google Scholar] [CrossRef]
- Hu, T.; Chen, R.; Wang, Q.; He, C.; Liu, S. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis. J. Sep. Sci. 2021, 44, 274–309. [Google Scholar] [CrossRef]
- Yi, X.L.; Fang, R.; Chen, G.H. Molecularly Imprinted Solid-Phase Extraction in the Analysis of Agrochemicals. J. Chromatogr. Sci. 2013, 51, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Male, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.I.; Cabrita, M.J.; Costa Freitas, A.M. Application of Molecularly Imprinted Polymers for the Analysis of Pesticide Residues in Food—A Highly Selective and Innovative Approach. Am. J. Analyt. Chem. 2011, 2, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Sobiech, M.; Luliński, P.; Wieczorek, P.P.; Marć, M. Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. Trends Anal. Chem. 2021, 142, 116306. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncubb, S.; Chimuka, L. Green Chemistry Features in Molecularly Imprinted Polymers Preparation Process. In Comprehensive Analytical Chemistry, MIP Synthesis, Characteristics and Analytical Application; Marć, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 86, pp. 337–364. [Google Scholar]
- Madikizela, L.M.; Tavengwa, N.T.; Tutu, H.; Chimuka, L. Green aspects in molecular imprinting technology: From design to environmental applications. Trends Environ. Anal. Chem. 2018, 17, 14–22. [Google Scholar] [CrossRef]
- Pratama, K.F.; Manik, M.E.R.; Rahayu, D.; Hasanah, A.N. Effect of the Molecularly Imprinted Polymer Component Ratio on Analytical Performance. Chem. Pharm. Bull. 2020, 68, 1013–1024. [Google Scholar] [CrossRef]
- Turiel, E.; Esteban, A.M. Molecularly imprinted polymers for sample preparation: A review. Anal. Chim. Acta 2010, 668, 87–99. [Google Scholar] [CrossRef]
- Yan, H.; Row, K.H. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. Int. J. Mol. Sci. 2006, 7, 155–178. [Google Scholar] [CrossRef] [Green Version]
- Marć, M.; Kupka, T.; Wieczorek, P.P.; Namieśnik, J. Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. Trends Anal. Chem. 2018, 98, 64–78. [Google Scholar] [CrossRef]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Anal. Chem. 2019, 114, 202–217. [Google Scholar] [CrossRef]
- Tan, C.J.; Tong, Y.W. Molecularly imprinted beads by surface imprinting. Anal. Bioanal. Chem. 2007, 389, 369–376. [Google Scholar] [CrossRef]
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta 2016, 183, 2677–2695. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Montone, C.M.; Piovesana, S.; Laganà, A. Recent applications of magnetic solid-phase extraction for sample preparation. Chromatographia 2019, 82, 1251–1274. [Google Scholar] [CrossRef]
- Figueiredo, L.; Erny, G.L.; Santos, L.; Alves, A. Applications of molecularly imprinted polymers to the analysis and removal of personal care products: A review. Talanta 2016, 146, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Turiel, E.; Martin-Esteban, A. Molecularly imprinted stir bars for selective extraction of thiabendazole in citrus samples. J. Sep. Sci. 2012, 35, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Alvarez, M.; Turiel, E.; Martin-Esteban, A. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of triazines from environmental soil samples. J. Chromatogr. A 2016, 1469, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Su, L.; Teng, Y.; Hao, J.; Bi, Y. Fluorescent nanomaterials combined with molecular imprinting polymer: Synthesis, analytical applications, and challenges. Microchim. Acta 2020, 187, 399. [Google Scholar] [CrossRef] [PubMed]
- Farzin, M.A.; Abdoos, H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2021, 224, 121828. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lu, K.Q.; Tang, Z.R.; Xu, Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Sobiech, M.; Bujak, P.; Luliński, P.; Pron, A. Semiconductor nanocrystals-polymers hybrid nanomaterials and their application in molecular imprinting. Nanoscale 2019, 11, 12030–12074. [Google Scholar] [CrossRef]
- Wang, Y.F.; Pan, M.M.; Yu, X.; Xu, L. The recent advances of fluorescent sensors based on molecularly imprinted fluorescent nanoparticles for pharmaceutical analysis. Curr. Med. Sci. 2020, 40, 407–421. [Google Scholar] [CrossRef]
Criteria Category | Criterion | Unit | Evaluation System |
---|---|---|---|
MIP preparation | Functional monomer type | [points] | NFPA 704 |
Functional monomer total amount | [mg] | [-] | |
Cross-linking agent type | [points] | NFPA 704 | |
Cross-linking agent amount | [mg] | [-] | |
Porogen agent/solvent type | [points] | NFPA 704 | |
Porogen agent/solvent amount | [g] | [-] | |
Initiator type | [points] | NFPA 704 | |
Initiator amount | [mg] | [-] | |
Bulky polymerization | [points] | binary scale | |
Fe3O4 magnetic microspheres synthesis | [points] | binary scale | |
Total amount of solvents and reagents used during surface modification stage | [mL] | [-] | |
Removing/washing the unreacted chemicals by organic solvent | [points] | binary scale | |
Solid-core amount | [mg] | [-] | |
Use of dummy template | [points] | binary scale | |
Core type | [points] | 0—carbon dots 1—quantum dots | |
Quantum dots/carbon dots amount | [µL] | [-] | |
Use of surfactant | [points] | binary scale | |
The use of breaking microemulsion solvent | [points] | binary scale | |
CD/QD@MIP reaction temperature above 40 °C | [points] | binary scale | |
Application of semiconductor heavy metals (such as CdTe, CdSe) | [points] | binary scale | |
MIP application | Sample amount | [mL] | [-] |
Amount of used MIP | [mg] | [-] | |
Elution solvent amount | [mL] | [-] | |
Additional solvents amount | [mL] | [-] | |
Solvent evaporation and/or reconstitution | [points] | binary scale | |
Concentration of QD/CD@MIP used | [mg·L−1] | [-] | |
Final determination | Final determination technique | [points] | higher scores assigned to less standard and more environmentally problematic techniques |
Detector | [points] | higher scores assigned to less available detectors | |
Amount of injected sample | [µL] | [-] | |
LOD value | [µg·kg−1] | [-] | |
Average RSD value | [%] | [-] | |
Recovery in the range from 70–120% | [points] | binary scale |
Procedure Acronym | Sample Type | Analyte | Functional Monomer | Cross-Linking Agent | Porogen/Solvent | Reaction Initiator | Recovery | LOD | Final Determination Technique | References |
---|---|---|---|---|---|---|---|---|---|---|
MI_SPE_1 | soil, plant material | imidacloprid | MAA | EDGMA | ACN | AIBN | 102–114% | 0.03 μg∙g−1 | IMS | [22] |
MI_SPE_2 | tap water, soil, cabbage | malathion | MAA | EDGMA | ACN and chloroform | AIBN | 96.06–111.49% (tap water) 98.13–103.83% (soil) 84.94–93.69% (cabbage) | 0.001 mg∙L−1 (tap water), 0.004 mg∙kg−1 (soil and cabbage) | GC-FPD | [23] |
MI_SPE_3 | apple | five benzoylureas pesticides | MAA | EDGMA | ACN | AIBN | 69.6–85.9% | 0,01 mg∙L−1 | HPLC-UV | [1] |
MI_SPE_4 | olive oil | deltamethrin | AA | EDGMA | DCM | AIBN | 87–94% | 0.95 mg∙L−1 | HPLC-UV | [24] |
MI_SPE_5 | almond oil | methidathion, malathion, diazinon | MAA | EDGMA | DCM | AIBN | 73–99% | 0.3 μg∙kg−1 | LC-MS/MS | [25] |
MI_SPE_6 | tap water, river water, municipal wastewater | chlorpyrifos, diazinon, oxon derivatives | MAA | EDGMA | DCM | AIBN | 79–104% | 0.07 μg∙L−1 | HPLC-UV | [26] |
MI_SPE_7 | honey | ethoprophos, phorate, terbufos, dimethoate, malathion, fenamiphos | MAA and Glycidyl methacrylate | EDGMA | chloroform | AIBN | 89.2–97.8% | 0.0005–0.0019 μg∙mL−1 | GC-FPD | [27] |
MI_SPE_8 | grape, green apple | diazinon, quinalphos, chlorpyrifos | MAA | EDGMA | ACN | AIBN | 91.51–101.04% | 0.83 μg∙L−1 | HPLC-UV | [28] |
MI_SPE_9 | lettuce, cucumber | trichlorfon, dichlorvos, dimethoate, imidacloprid, methamidophos | MAA | EDGMA | chloroform | AIBN | 87.48–97.85% | 0.15 mg∙L−1 | GC-FPD | [29] |
MI_SPE_10 | lake water | atrazine | MAA | EDGMA | chloroform | AIBN | 90.1–97.8%; 94.4–101.9% | n/m | HPLC-UV | [30] |
MI_SPE_11 | olive oil | dimethoate, omethoate | IA | EDGMA | DMF | AIBN | 89.8–98.02% | 0.012 μg∙g−1 | HPLC-UV | [31] |
Procedure Acronym | Sample Type | Analyte | Functional Monomer | Cross-Linking Agent | Porogen/Solvent | Reaction Initiator | Recovery | LOD | Final Determination Technique | Reference |
---|---|---|---|---|---|---|---|---|---|---|
mag_MIP_1 | edible oil | capsaicin, dihydrocapsaicin, eugenol | MAA and AA | EDGMA | toluene | AIBN | 87.9–104.1% | 0.05685–0.1388 μg∙kg−1 | HPLC-Fluorescence detector | [32] |
mag_MIP_2 | orange peel | thiabendazole, carbendazim | MAA | EDGMA | toluene: ACN | AIBN | 35% | 0.10 mg∙kg−1 | HPLC-UV | [33] |
mag_MIP_3 | cucumber | triadimefon, tebuconazole, bitertanol, diniconazole | MAA | TRIM | ACN | AIBN | 79.9–110.3% | 0.05 μg∙kg−1 | HPLC-MS/MS | [34] |
mag_MIP_4 | light and dark honey | thiamethoxam, thiacloprid | 2-VP | EDGMA | N,N-dimethylformamide | ABCVA | 96.8–106.5% | 0.045 μg∙kg−1 | UHPLC-MS/MS | [35] |
mag_MIP_5 | supermarket honey | λ-cyhalothrin | AA | DVB | ACN | AIBN | 98–107% | 2.3 ng∙mL−1 | fluorescence spectrophotometer | [36] |
mag_MIP_6 | red wine | methyl parathion, phoxim | APTES | TEOS | MeOH | none | >90% | n/m | HPLC-UV | [37] |
mag_MIP_7 | rice | chlorpyrifos | MAA | TRIM | EtOH | K2S2O8 | 81.2–92.1% | 0.0072 μg∙g−1 | HPLC-UV | [38] |
mag_MIP_8 | soil | methyl parathion | MAA and 4-VP | EDGMA | chloroform | AIBN | 81.1–87.0% | 5.2 ng∙g−1 | HPLC-UV | [39] |
mag_MIP_9 | lake water tap water | 2,4-dichlorophenoxyacetic acid | AA | EDGMA | ACN | AIBN | n/m | n/m | HPLC-UVs | [40] |
mag_MIP_10 | dry red wine | resveratrol | AA | EDGMA | ACN | AIBN | 79.3–90.6% | 4.42 ng∙mL−1 | HPLC-UV | [41] |
mag_MIP_11 | vegetables | acephate | MAA | EDGMA | EtOH | AIBN | 89.2–93.4% | 0.0025 mg∙kg−1 | HPLC-UV | [42] |
mag_MIP_12 | tomato; capsicum; strawberry | ametryn | 2-VP | EDGMA | EtOH | AIBN | 96–108% | 25 nmol∙L−1 | HPLC-UV | [43] |
Procedure Acronym | Sample Type | Analyte | Core Type | MIP-QD/CD Preparation Technique | Functional Monomer | Cross-Linking Agent | Porogen/Solvent | Recovery | LOD | Final Determination Technique | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
QD/CD_MIP_1 | sea water; water well; river water; drinking water | acetamiprid | CQD | reverse microemulsion | APTES | TEOS | cyclohexane | 92–102% | 0.11 nmol∙L−1 | Fluoroscence Spectrofotometer | [44] |
QD/CD_MIP_2 | water and wastewater samples | diniconazole | CdTe/CdS-QDs | sol-gel based method | APTES | TEOS | EtOH and MeOH | 95.6–105.5% | 6.4 μg∙L−1 | Fluoroscence Spectrofotometer | [45] |
QD/QC_MIP_3 | marine sediment | cyfluthrin | FeSe-QDs | reverse microemulsion | APTES and MAA | TEOS and EDGMA | cyclohexane | 88.0–113.9% | 1.3 μg∙kg−1 | Fluoroscence Spectrofotometer | [46] |
QD/CD_MIP_4 | water samples | nicosulfuron | Mn-doped ZnS-QD | sol-gel based method | APTES | TEOS | EtOH | 89.6–96.5% | 1.1 nmol∙L−1 | Fluoroscence Spectrofotometer | [47] |
QD/QC_MIP_5 | wastewater | acetamiprid | Si-CDs | reverse microemulsion | APTES | TEOS | cyclohexane | 89.4–101.5% | 2 nM | Fluoroscence Spectrofotometer | [48] |
QD/CD_MIP_6 | apple juice | patulin | Mn-doped ZnS-QD | sol-gel based method | APTES | TEOS | EtOH | 102.9–127.2% | 0.32 umol∙L−1 | Fluoroscence Spectrofotometer | [49] |
QD/CD_MIP_7 | tap water; river water | dimethoate | CdSe/ZnS-QD | reversed phase microemulsion | APTES | TEOS | cyclohexane | 89.8–98.0% | 2.1 μg∙L−1 | Fluoroscence Spectrofotometer | [50] |
QD/CD_MIP_8 | surface river water | pyrethroids | CdSe-QD | reversed microemulsion | APTES | TEOS | cyclohexane | 96–102% | 3.6 μg∙L−1 | Fluoroscence Spectrofotometer | [51] |
QD/CD_MIP_9 | tap water | paraquat | SiO2-CdTe-QDs | sol–gel copolymerization process | APTES | TEOS | water | 96.4–102.1% | 1.94 × 10−9 mol∙L−1 | Fluoroscence Spectrofotometer | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marć, M.; Bystrzanowska, M.; Pokajewicz, K.; Tobiszewski, M. Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples. Materials 2021, 14, 7078. https://doi.org/10.3390/ma14227078
Marć M, Bystrzanowska M, Pokajewicz K, Tobiszewski M. Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples. Materials. 2021; 14(22):7078. https://doi.org/10.3390/ma14227078
Chicago/Turabian StyleMarć, Mariusz, Marta Bystrzanowska, Katarzyna Pokajewicz, and Marek Tobiszewski. 2021. "Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples" Materials 14, no. 22: 7078. https://doi.org/10.3390/ma14227078
APA StyleMarć, M., Bystrzanowska, M., Pokajewicz, K., & Tobiszewski, M. (2021). Multivariate Assessment of Procedures for Molecularly Imprinted Polymer Synthesis for Pesticides Determination in Environmental and Agricultural Samples. Materials, 14(22), 7078. https://doi.org/10.3390/ma14227078