Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiation Shielding Capacity
2.2. Petrographic Investigation
2.3. Analytical Techniques
3. Results and Discussion
3.1. Radionuclides Concentrations
3.2. Radiation Hazard Assessment
3.2.1. Absorbed Dose Rate (D)
3.2.2. Annual Effective Dose (AED)
3.2.3. Radium Equivalent Activity (Raeq)
3.2.4. External Hazard Index (Hex)
3.2.5. Internal Hazard Index (Hin)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaafar, I.M.; Abdrabboh, A.; Alshami, A.S. Gamma-ray spectrometric investigation of north El-Tor area, southwestern. NRIAG J. Astron. Geophys. 2018, 7, 390–398. [Google Scholar] [CrossRef]
- Rashwan, M.A.; Lasheen, E.S.R.; Shalaby, B.N. Incorporation of metagabbro as cement replacement in cement-based materials: A role of mafic minerals on the physico-mechanical and durability properties. Constr. Build. Mater. 2019, 210, 256–268. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Emad, B.M.; Sayyed, M.I.; Khandaker, M.U.; Bradley, D.A. Natural radioactivity in the prospecting tunnel in Egypt: Dose rate and risk assessment. Radiat. Phys. Chem. 2021, 187, 109555. [Google Scholar] [CrossRef]
- Stern, R.J.; Ali, K.A.; Liegeois, J.P.; Johnson, P.R.; Kozdroj, W.; Kattan, F.H. Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian Shield. Am. J. Sci. 2010, 310, 791–811. [Google Scholar] [CrossRef]
- Costa, F.P.d.; Fernandes, J.V.; Melo, L.R.L.d.; Rodrigues, A.M.; Menezes, R.R.; Neves, G.d.A. The Potential for Natural Stones from Northeastern Brazil to Be Used in Civil Construction. Minerals 2021, 11, 440. [Google Scholar] [CrossRef]
- El-Gamal, H.; Sidique, E.; El-Haddad, M. Spatial Distributions and Risk Assessment of the Natural Radionuclides in the Granitic Rocks from the Eastern Desert, Egypt. Minerals 2019, 9, 386. [Google Scholar] [CrossRef] [Green Version]
- Mashaly, A.O.; El-Kaliouby, B.A.; Shalaby, B.N.; El–Gohary, A.M.; Rashwan, M.A. Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. J. Clean. Prod. 2016, 112, 731–741. [Google Scholar] [CrossRef]
- El Mezayen, A.M.; Heikal, M.A.; Abu Zeid, I.K.; Omar, S.A.; El-Feky, M.G.; Lasheen, E.S.R. Petrography, geochemistry and radioactivity of El-Gidami granitic Rocks, Central Eastern Desert, Egypt. Al-Azhar Bullet. Sci. Confer. 2017, 9, 25–40. [Google Scholar]
- El Mezayen, A.M.; Heikal, M.A.; El-Feky, M.G.; Shahin, H.A.; Zeid, I.A.; Lasheen, S.R. Petrology, geochemistry, radioactivity, and M–W type rare earth element tetrads of El Sela altered granites, south eastern desert, Egypt. Acta Geochim. 2019, 38, 95–119. [Google Scholar] [CrossRef]
- Jaupart, C.; Mareschal, J.C.; Bouquerel, H.; Phaneuf, C. The building and stabilization of an Archean Craton in the Superior Province, Canada, from a heat flow perspective. J. Geophys. Res. Solid Earth 2014, 119, 9130–9155. [Google Scholar] [CrossRef]
- Bea, F. Residence of REE, Y5 Th and U in Granites and Grustal Protoliths; Implications for the Chemistry of Crustal Melts. J. Petrol. 1996, 37, 521–552. [Google Scholar] [CrossRef]
- Abdel-Razek, Y.A.; Masoud, M.S.; Hanafi, M.Y.; El-Nagdy, M.S. Study of the parameters affecting radon gas flux from the stream sediments at Seila area Southeastern desert, Egypt. Environ. Earth Sci. 2015, 73, 8035–8044. [Google Scholar] [CrossRef]
- Maithani, P.B.; Srinivasan, S. Felsic volcanic rocks, a potential source of uranium—An Indian overview. Energy Procedia 2011, 7, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Mudd, G.M. Radon releases from Australian uranium mining and milling projects: Assessing the UNSCEAR approach. J. Environ. Radioact 2008, 99, 288–315. [Google Scholar] [CrossRef] [PubMed]
- Hanfi, M.Y.M.; Masoud, M.S.; Sayyed, M.I.; Khandaker, M.U.; Faruque, M.R.I.; Bradley, D.A.; Mostafa, M.Y.A. The presence of radioactive heavy minerals in prospecting trenches and concomitant occupational exposure. PLoS ONE 2021, 16, e0249329. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Yarmoshenko, V.; Seleznev, A.A.; Malinovsky, G.; Ilgasheva, E.; Zhukovsky, M.V. Beta radioactivity of urban surface–deposited sediment in three Russian cities. Environ. Sci. Pollut. Res. 2020, 27, 40309–40315. [Google Scholar] [CrossRef] [PubMed]
- Cumberland, S.A.; Douglas, G.; Grice, K.; Moreau, J.W. Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth Sci. Rev. 2016, 159, 160–185. [Google Scholar] [CrossRef] [Green Version]
- Xinwei, L.; Lingqing, W.; Xiaodan, J. Radiometric analysis of Chinese commercial granites. J. Radional. Nucl. Chem. 2006, 267, 669–673. [Google Scholar] [CrossRef]
- Zoheir, B.; Goldfarb, R.; Holzheid, A.; Helmy, H.; El Sheikh, A. Geochemical and geochronological characteristics of the Um Rus granite intrusion and associated gold deposit, Eastern Desert, Egypt. Geosci. Front. 2020, 11, 325–345. [Google Scholar] [CrossRef]
- Gaafar, I.; Hanfi, M.; El-Ahll, L.S.; Zeidan, I.Z. Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt. Appl. Radiat. Isot. 2021, 173, 109734. [Google Scholar] [CrossRef]
- El Mezayen, A.M.; Heikal, M.A.; Omar, S.A.; El Feky, M.G.; Lasheen, E.S. Petrology, Geochemistry and fractional modelling of El Gidami Neoproterozoic granitic rocks, Central Eastern Desert, Egypt. Nat. Sci. 2015, 13, 102–114. [Google Scholar]
- Lasheen, E.S.R.; Saleh, G.M.; Khaleal, F.M.; Alwetaishi, M. Petrogenesis of Neoproterozoic Ultramafic Rocks, Wadi Ibib—Wadi Shani, South Eastern Desert, Egypt: Constraints from Whole Rock and Mineral Chemistry. Appl. Sci. 2021, 11, 10524. [Google Scholar] [CrossRef]
- Yassin, A.A.; Masoud, S.M.; Moamed, Y.H.; Mohamed, S.E. Effective radiation doses from natural sources at Seila area South Eastern Desert, Egypt. J. Taibah Univ. Sci. 2016, 10, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Arunima, S.; Lekshmi, R.; Jojo, P.J.; Khandaker, M.U. A study on leaching of primordial radionuclides 232Th and 40K to water bodies. Radiat. Phys. Chem. 2021, 188, 109658. [Google Scholar] [CrossRef]
- Monica, S.; Jojo, P.J.; Khandaker, M.U. Radionuclide concentrations in medicinal florae and committed effective dose through Ayurvedic medicines. Int. J. Radiat. Biol. 2020, 96, 1028–1037. [Google Scholar] [CrossRef]
- Iqbal, M.; Tufail, M.; Mirza, S.M. Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer. J. Environ. Radioact. 2000, 51, 255–265. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Christofides, G.; Koroneos, A.; Papadopoulou, L.; Papastefanou, C.; Stoulos, S. Natural radioactivity and radiation index of the major plutonic bodies in Greece. J. Environ. Radioact. 2013, 124, 227–238. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of ionizing Radiation—Exposures of The Public and Workers from Various Sources of Radiation—UNSCEAR 2008 Report; United Nations Publication: New York, NY, USA, 2010. [Google Scholar]
- Pavlidou, S.; Koroneos, A.; Papastefanou, C. Natural radioactivity of granites used as building materials. J. Environ. Radioact. 2006, 89, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Nagar, M.S.; Bayoumi, B.M.; Morsy, W.M. Characteristics and Evaluation of Leaching Behavior of Uranium Mineralization in Qash Amir Granite, South Eastern Desert, Egypt. Am. J. Appl. Ind. Chem. 2021, 5, 7–16. [Google Scholar] [CrossRef]
- Nagar, M.S.; Shahin, H.A.; Bahige, M. Column Percolation Leaching of Uranium from El-Sela Area, South Eastern Desert, Egypt. Res. Rev. J. Chem. 2016, 5, 32–41. [Google Scholar]
- El-Shershaby, A. Study of radioactivity levels in granite of Gable Gattar II in the north eastern desert of Egypt. Appl. Radiat. Isot. 2002, 57, 131–135. [Google Scholar] [CrossRef]
- Awad, H.A.; Zakaly, H.M.; Nastavkin, A.V.; El Tohamy, A.M.; El-Taher, A. Radioactive mineralizations on granitic rocks and silica veins on shear zone of El-Missikat area, Central Eastern Desert, Egypt. Appl. Radiat. Isot. 2021, 168, 109493. [Google Scholar] [CrossRef]
- Amin, R.M. Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites. Environ. Earth Sci. 2012, 67, 771–775. [Google Scholar] [CrossRef]
- Akpanowo, M.A.; Umaru, I.; Iyakwari, S.; Joshua, E.O.; Yusuf, S.; Ekong, G.B. Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria. Sci. Afr. 2020, 10, e00561. [Google Scholar] [CrossRef]
- AlZahrani, J.H.; Alharbi, W.R.; Abbady, A.G.E. Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from Northwestern Saudi Arabia. Aust. J. Basic Appl. 2011, 5, 683–690. [Google Scholar]
- Al-Trabulsy, H.A.; Khater, A.E.M.; Habbani, F.I. Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat. Phys. Chem. 2011, 80, 343–348. [Google Scholar] [CrossRef]
- Thabayneh, K.M. Measurement of Natural Radioactivity and Radon Exhalation Rate in Granite Samples Used in Palestinian Buildings. Arab. J. Sci. Eng. 2013, 38, 201–207. [Google Scholar] [CrossRef]
- Zare, M.R.; Mostajaboddavati, M.; Kamali, M.; Abdi, M.R.; Mortazavi, M.S. 235U, 238U, 232Th, 40K and 137Cs activity concentrations in marine sediments along the northern coast of Oman Sea using high-resolution gamma-ray spectrometry. Mar. Pollut. Bull. 2012, 64, 1956–1961. [Google Scholar] [CrossRef]
- Abbasi, A. Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat. Prot. Dosim. 2013, 155, 335–342. [Google Scholar] [CrossRef]
- Sharaf, J.M.; Hamideen, M.S. Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate. Appl. Radiat. Isot. 2013, 80, 61–66. [Google Scholar] [CrossRef]
- UNSCEAR. Exposures from natural radiation sources (Annex B). In Sources and Effects of Ionizing Radiation; UNSCEAR: New York, NY, USA, 2000; pp. 84–141. [Google Scholar]
- Hanfi, M.Y.; Masoud, M.S.; Ambrosino, F.; Mostafa, M.Y. Natural radiological characterization at the Gabal El Seila region (Egypt). Appl. Radiat. Isot. 2021, 173, 109705. [Google Scholar] [CrossRef]
- Md Sirajul Islam, A.A.; Hossain Miah, M.M.; Ahmed, M.; Hossain, S.; Khandaker, M.U. The presence of terrestrial radionuclides in the Karnaphuli and Halda river sediments and concomitant hazards to the dwellers. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Sivakumar, S.; Chandrasekaran, A.; Senthilkumar, G.; Gandhi, M.S.; Ravisankar, R. Determination of radioactivity levels and associated hazards of coastal sediment from south-east coast of Tamil Nadu with a statistical approach. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 601–614. [Google Scholar] [CrossRef]
- Amatullah, S.; Rahman, R.; Ferdous, J.; Siraz, M.M.M.; Khandaker, M.U.; Mahal, S.F. Assessment of radiometric standard and potential health risks from building materials used in Bangladeshi dwellings. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Karim, M.A.; Gafaar, I.; El-Halim, E.A.; Hanfi, M.; El-Dine, N.W. Natural radioactivity and radiological implications of granite rocks, El-Sela area, Southeastern Desert, Egypt. J. Radioanal. Nucl. Chem. 2021, 330, 707–720. [Google Scholar] [CrossRef]
Granite/Statistics Parameters | 226Ra | 232Th | 40K | 232Th/226Ra |
---|---|---|---|---|
Black Aswan | ||||
Mean | 29.60 | 44.44 | 803.37 | 1.56 |
SD | 6.41 | 4.04 | 160.62 | 0.40 |
Min | 22.20 | 40.40 | 626.00 | 1.21 |
Max | 33.30 | 48.48 | 939.00 | 2.00 |
Nero Aswan | ||||
Mean | 25.90 | 55.21 | 855.53 | 2.20 |
SD | 6.41 | 6.17 | 95.62 | 0.52 |
Min | 22.20 | 48.48 | 751.20 | 1.70 |
Max | 33.30 | 60.60 | 939.00 | 2.73 |
White Halayb | ||||
Mean | 15.17 | 4.71 | 292.13 | 0.32 |
SD | 5.25 | 1.17 | 41.68 | 0.04 |
Min | 11.10 | 4.04 | 244.14 | 0.29 |
Max | 21.09 | 6.06 | 319.26 | 0.36 |
Red Hurghada | ||||
Mean | 111.00 | 86.19 | 939.00 | 0.78 |
SD | 11.10 | 6.17 | 93.90 | 0.08 |
Min | 99.90 | 80.80 | 845.10 | 0.69 |
Max | 122.10 | 92.92 | 1032.90 | 0.84 |
Red Aswan | ||||
Mean | 44.40 | 92.92 | 1042.29 | 1.92 |
SD | 11.10 | 12.99 | 74.22 | 0.28 |
Min | 33.30 | 68.68 | 898.31 | 1.60 |
Max | 55.50 | 92.92 | 1042.29 | 2.09 |
Karnak | ||||
Mean | 55.50 | 46.46 | 616.61 | 0.85 |
SD | 15.70 | 8.57 | 123.94 | 0.09 |
Min | 44.40 | 40.40 | 528.97 | 0.79 |
Max | 66.60 | 52.52 | 704.25 | 0.91 |
Verdi | ||||
Mean | 49.95 | 44.44 | 968.74 | 0.91 |
SD | 7.85 | 5.71 | 104.02 | 0.26 |
Min | 44.40 | 40.40 | 895.18 | 0.73 |
Max | 55.50 | 48.48 | 1042.29 | 1.09 |
Worldwide (UNSCEAR, 2010) | 32.00 | 45.00 | 412.00 |
Country | 226Ra | 232Th | 40K | References |
---|---|---|---|---|
Egypt | 103–2047 | 12.4–101.2 | 831.6–1394.6 | [31] |
Egypt | 165–27,851 | 71–274 | 1048–1230 | [32] |
Egypt | 12.4–534.4 | 56.6–169.8 | 398–1113 | [33] |
Egypt | 137 | 82 | 1082 | [34] |
Nigeria | 63.29 | 226.67 | 832.59 | [35] |
Saudi Arabia | 28.82 | 34.83 | 665.08 | [36] |
Saudi Arabia | 11 | 22 | 641 | [37] |
Palestine | 71 | 82 | 780 | [38] |
Oman | 17 | 18 | 379 | [39] |
Iran | 77.4 | 44.5 | 1017.2 | [40] |
Jordan | 41.52 | 58.42 | 897 | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasheen, E.S.R.; Rashwan, M.A.; Osman, H.; Alamri, S.; Khandaker, M.U.; Hanfi, M.Y. Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity. Materials 2021, 14, 7290. https://doi.org/10.3390/ma14237290
Lasheen ESR, Rashwan MA, Osman H, Alamri S, Khandaker MU, Hanfi MY. Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity. Materials. 2021; 14(23):7290. https://doi.org/10.3390/ma14237290
Chicago/Turabian StyleLasheen, El Saeed R., Mohammed A. Rashwan, Hamid Osman, Sultan Alamri, Mayeen U. Khandaker, and Mohamed Y. Hanfi. 2021. "Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity" Materials 14, no. 23: 7290. https://doi.org/10.3390/ma14237290
APA StyleLasheen, E. S. R., Rashwan, M. A., Osman, H., Alamri, S., Khandaker, M. U., & Hanfi, M. Y. (2021). Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity. Materials, 14(23), 7290. https://doi.org/10.3390/ma14237290