Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards
Abstract
:1. Introduction
2. Experimental Material
3. Results and Discussion
4. Conclusions
- -
- the modulus of elasticity of side boards falls within a very wide range of values, from approx. 5.5 kN/mm2 to 24 kN/mm2; however, over 60% of the material is sawn timber with the modulus of elasticity over 11 kN/mm2,
- -
- side boards are characterised by high elastic properties,
- -
- in accordance with the assumptions, both variants were characterised by a comparable modulus of elasticity, although it was much higher than it had been expected,
- -
- static bending strength of beams manufactured in the vertical timber arrangement system is slightly higher than that of beams produced from horizontally arranged timber,
- -
- beams manufactured from horizontally arranged timber layers shows a smaller confidence interval for static bending strength,
- -
- the difference in the value of the (5-percentile) for both beam types is slight and it needs to be stated that both beam types exhibit a high bending strength exceeding 40 N/mm2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caniato, M.; Marzi, A.; da Monteiro Silva, S.; Gasparella, A. A review of the thermal and acoustic properties of materials for timber building construction. J. Build. Eng. 2021, 43, 103066. [Google Scholar] [CrossRef]
- Ramage, M.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wod from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Hekkert, M.; Goverse, T.; Groenewegen, P.; Worell, E.; Smits, R.E.H.M. Wood in the Residential Construction Sector: Opportunities and Constraints. Resour. Conserv. Recycl. 2001, 34, 53–74. [Google Scholar] [CrossRef]
- Steele, P.H. Factors Determining Lumber Recovery in Sawmilling; Gen. Tech. Rep. FPL-39; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1984.
- Baltrušaitis, A.; Pranckevičienė, V. The Influence of Log Offset on Sawn Timber Volume Yield. Mater. Sci. 2005, 11, 403–406. [Google Scholar]
- Rongrong, L.; Pingxiang, C.; Xiaolei, G.; Ji, F. A Novel Sawing Method for Small-Diameter Log. Wood Res. 2015, 60, 293–300. [Google Scholar]
- Gil-Moreno, D.; Ridley-Ellis, D.; Harte, A.M. Timber grading potential of Douglas fir in the Republic of Ireland and the UK. Int. Wood Prod. J. 2019, 10, 64–69. [Google Scholar] [CrossRef]
- Gil-Moreno, D.; Ridley-Ellis, D.; McLean, P. Timber Properties of Noble fir, Norway Spruce, Western Red Cedar and Western Hemlock Grown in Great Britain; Research Note FCRN026; Research Note-Forestry Commission: Edinburgh, UK, 2016.
- Rais, A.; Pretzsch, H.; Van de Kuilen, J.-W.G. Roundwood pre-grading with longitudinal acoustic waves for production of structural boards. Eur. J. Wood Wood Prod. 2014, 72, 87–98. [Google Scholar] [CrossRef]
- Krzosek, S.; Burawska-Kupniewska, I.; Mańkowski, P. The Influence of Scots Pine Log Type (Pinus sylvestris L.) on the Mechanical Properties of Lumber. Forests 2020, 11, 1257. [Google Scholar] [CrossRef]
- Burawska-Kupniewska, I.; Krzosek, S.; Mańkowski, P.; Grześkiewicz, M. Quality and Bending Properties of Scots Pine (Pinus sylvestris L.) Sawn Timber. Forests 2020, 11, 1200. [Google Scholar] [CrossRef]
- Mirski, R.; Malinowski, Z.; Dziurka, D.; Wieruszewski, M. A Qualitative Analysis of Sawn Timber Obtained from Various Sites Throughout Poland in the Aspect of Polish and European Standards of Quality. Forests 2020, 11, 713. [Google Scholar]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Wieruszewski, M.; Kawalerczyk, J.; Trociński, A. The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part I: Evaluation of the Quality of the Pine Timber in the Bending Test. Materials 2020, 13, 3957. [Google Scholar] [CrossRef] [PubMed]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Kawalerczyk, J.; Kuliński, M.; Łabęda, K. The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part II: Strength Properties of Glued Laminated Timber. Materials 2020, 13, 4029. [Google Scholar] [CrossRef] [PubMed]
- Sikora, K.S.; Krzosek, S. Timber grading within the European Union—Irish and Polish example, Annals of Warsaw University of Life Sciences—SGGW. For. Wood Technol. 2014, 86, 204–209. [Google Scholar]
- Bacher, M.; Krzosek, S. Bending and Tension Strength Classes in European Standards, Annals of Warsaw University of Life Sciences—SGGW. For. Wood Technol. 2014, 88, 14–22. [Google Scholar]
- Wdowiak, A.; Brol, J. Methods of strength grading of structural timber-comparative analysis of visual and machine grading on the example of scots pine timber from four natural forest regions of Poland. Struct. Environ. 2019, 11, 210–224. [Google Scholar] [CrossRef]
- Hernandez, R.; Green, D.W.; Kretschmann, D.E.; Verrill, S.P. Improved Utilization of Small-Diameter Ponderosa Pine in Glulam Timber; Research Paper, FPL-RP-625; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2005; 38p.
- Jankowiak, J.J.; Manbeck, H.B.; Hernandez, R.; Moody, R.G.; Blankenhorn, P.R.; Labosky, P. Efficient Utilization of Red Maple Lumber in Glued-Laminated Timber Beams; Research Paper FPL-RP-541; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1995; 23p.
- Lei, Y.C.; Zhang, S.Y.; Jiang, Z. Models for predicting lumber bending MOR and MOE based on tree and stand characteristics in black spruce. Wood Sci. Technol. 2005, 39, 37–47. [Google Scholar] [CrossRef]
- Sulistyowati, I.; Hadi, Y.S.; Surjokusumo, S.; Nugroho, N. The Performance of Lamina’s Thickness for Horizontally Glued Laminated Beam. In Proceedings of the World Timber Conference, Miyazaki, Japan, 2–5 June 2008. [Google Scholar]
- Fujimoto, K.; Hiramatsu, Y.; Miyatake, A.; Shindo, K.; Karube, M.; Harada, M.; Ukyo, S. Strength properties of glued laminated timber made from edge-glued laminae I: Strength properties of edge-glued karamatsu (Larix kaempferi) laminae. J. Wood Sci. 2010, 56, 444–451. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Fujimoto, K.; Miyatake, A.; Shindo, K.; Nagao, H.; Kato, H.; Ido, H. Strength properties of glued laminated timber made from edge-glued laminae II: Bending, tensile, and compressive strength of glued laminated timber. J. Wood Sci. 2011, 57, 66–70. [Google Scholar] [CrossRef]
- Hernandez, R.; Moody, R.C.; Russell, F. Fiber Stress Values for Design of Glulam Timber Utility Structures; Research Paper, FPL-RP-532; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1995; 23p.
- Martins, C.; Monteiro, S.; Knapic, S.; Dias, A. Assessment of Bending Properties of Sawn and Glulam Blackwood in Portugal. Forests 2020, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Nadir, Y.; Nagarajan, P. The behavior of horizontally glued laminated beams using rubber wood. Constr. Build. Mater. 2014, 55, 398–405. [Google Scholar] [CrossRef]
- Bakalarz, M.; Kossakowski, P.G. Mechanical properties of laminated veneer lumber beams strengthened with CFRP sheets. Arch. Civ. Eng. 2019, 65, 57–66. [Google Scholar]
- Bal, B.C. Some technological properties of laminated veneer lumber produced with fast-growing Poplar and Eucalyptus, Maderas-ciencia Y. Technologia 2016, 18, 413–424. [Google Scholar]
- McGavin, R.; Nguyen, H.; Gilbert, B.; Dakin, T.; Faircloth, A. A Comparative Study on the Mechanical Properties of Laminated Veneer Lumber (LVL) Produced from Blending Various Wood Veneers. BioResources 2019, 14, 9064–9081. [Google Scholar]
- Flaig, M.; Blaß, H.J. Bending strength of cross laminated timber beams loaded in plane. In Proceedings of the World Conference on Timber Engineering (WCTE 2014), Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Jeleč, M.; Danielsson, H.; Rajčić, V.; Serrano, E. Experimental and numerical investigations of cross-laminated timber elements at in-plane beam loading conditions. Constr. Build. Mater. 2019, 206, 329–346. [Google Scholar] [CrossRef]
- Fan, M. Performance of edgewise loaded wood based panels and their I-beam components. Constr. Build. Mater. 2012, 30, 447–454. [Google Scholar] [CrossRef]
- Crocetti, R.; Ekholm, K.; Kliger, R. Stress-laminated-timber decks: State of the art and design based on Swedish practice. Eur. J. Wood Prod. 2016, 74, 453–461. [Google Scholar] [CrossRef]
- Chiou, W.S.; Bohnhoff, D.R.; Hernandez, R. Probabilistic Modeling of Unspliced Four-Layer Nail-Laminated Assemblies; FAO: Rome, Italy, 1994. [Google Scholar]
- Bohnhof, D.R. Modifications and Extensions to Design Specifications for Mechanically-Laminated Wood Assemblies; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013; p. 131620162. [Google Scholar]
- Ogunrinde, O.; Gong, M.; Chui, Y.H.; Li, L. Flexural Properties of Downscaled Dowel-Type-Fastener Laminated Timber. Int. J. Sci. Res. Multidiscip. Stud. 2019, 5, 98–104. [Google Scholar]
- EN 338. Structural Timber—Strength Classes; European Committee for Standarization: Brussels, Belgium, 2016. [Google Scholar]
- EN 518. Structural Timber—Grading—Requirements for Visual Strength Grading Standards; European Committee for Standarization: Brussels, Belgium, 2000. [Google Scholar]
- PN-D-94021-10. Constructional Softwood Sorted by Strength Grading Methods; Polish Committee for Standarization: Warsaw, Poland, 2013. (In Polish) [Google Scholar]
- EN 14080. Timber Structures-Glued Laminated Timber and Glued Solid Timber—Requirements; European Committee for Standarization: Brussels, Belgium, 2013. [Google Scholar]
- Mirski, R.; Kuliński, M.; Dziurka, D.; Thomas, M.; Antonowicz, R. Strength Properties of Structural Glulam Elements from Pine (Pinus sylvestris L.) Timber Reinforced in the Tensile Zone with Steel and Basalt Rods. Materials 2021, 14, 2574. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirski, R.; Dziurka, D.; Kuliński, M.; Trociński, A.; Kawalerczyk, J.; Antonowicz, R. Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards. Materials 2021, 14, 7312. https://doi.org/10.3390/ma14237312
Mirski R, Dziurka D, Kuliński M, Trociński A, Kawalerczyk J, Antonowicz R. Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards. Materials. 2021; 14(23):7312. https://doi.org/10.3390/ma14237312
Chicago/Turabian StyleMirski, Radosław, Dorota Dziurka, Marcin Kuliński, Adrian Trociński, Jakub Kawalerczyk, and Ryszard Antonowicz. 2021. "Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards" Materials 14, no. 23: 7312. https://doi.org/10.3390/ma14237312
APA StyleMirski, R., Dziurka, D., Kuliński, M., Trociński, A., Kawalerczyk, J., & Antonowicz, R. (2021). Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards. Materials, 14(23), 7312. https://doi.org/10.3390/ma14237312