Carbon Materials in Electroanalysis of Preservatives: A Review
Abstract
:1. Introduction
2. Carbon Materials for Working Electrodes in Voltammetry
2.1. Glassy Carbon
2.2. Graphite
2.3. Diamond
2.4. Carbon Paste
2.5. Carbon Fibers
2.6. Carbon Nanomaterials
2.6.1. Fullerenes
2.6.2. Carbon Nanotubes
2.6.3. Graphene
2.6.4. Other Carbon Nanomaterials
3. Electroanalysis of Preservatives on Carbon Materials
Electrode | Analyte | Real Sample | Electrolyte | Voltammetric Technique | LR μM | LOD μM | Ref. | |
---|---|---|---|---|---|---|---|---|
BASE | MODIFIER | |||||||
GC | BARE | BHA BHT TBHQ PrG | Food | HClO4/MetOH | LSV | 2.8–83.2 2.3–36.3 6.0–90.2 4.7–70.7 | 1.05 0.68 0.44 2.54 | [144] |
BHA BHT TBHQ | Food | HCl/H2O | SWV | 11.1–554.8 36.3–90.8 6.0–481.3 | nd | [145] | ||
BHA BHT TBHQ | BRB pH 2.0 | 11.1–443.8 18.2–136.1 24.1–481.3 | ||||||
MP | Pharmaceuticals Cosmetics | HClO4/H2O | SWV | 10–202 | 3.28 | [129] | ||
MP EP PrP BP | Food | BRB pH 4.5 | SWV | 0.78–4.48 | 0.29 0.38 0.36 0.39 | [122] | ||
BP | Water | K4P2O7, CTAC | DPV | 0.1–1000 | 0.1 | [131] | ||
BAC | Pharmaceutical | TBAH/AN | SWV | 10–200 | 1.7 | [154] | ||
GC | MWCNTs | CAR | Food | PBS pH 6.5 | DPV | 0.1–150 | 0.075 | [157] |
MWCNTs/NAF | 8-HQ | Cosmetics | Ac-B pH 3.6 | DPV | 0.02–10 | 9 × 10–3 | [155] | |
MP | Standard solution | PBS pH 6.5 | LSV | 3–100 | 1.0 | [128] | ||
BP | Water | PBS pH 7.0 | AdSV | 10–100 | 0.2 | [132] | ||
MWCNTs-LB | MP | Cosmetics | PBS pH 3.0 | LSV | 1–80 | 0.4 | [113] | |
3D GN-MWCNTs | Natamycin | Food | H2SO4/H2O | LSASV | 0.05–2.5 | 0.01 | [156] | |
poly(carminic acid)/MWCNTs | BHA TBHQ | Oil | BRB pH 2.0 | DPV | 0.25–75 0.50–75 | 0.23 0.36 | [139] | |
PTZ-IL/MWCNTs | Sulfite | Food | NH4Cl/H2O | AMP | 30–1177 | 9.3 | [158] | |
GN-SWCNTs/MIPs | PrG | Food | PBS pH 6.0, KCl | DPV | 0.08–2600 | 0.05 | [170] | |
SWCNTs/poly(L-serine) | Natamycin | Food | H2SO4 pH 1.0 | LSV | 0.06–6.0 | 0.04 | [171] | |
Pt-NP@SWCNTs | MP | Standard solution | PBS pH 7.0 | DPV | 5.0 × 10–3–0.03 | 5.0 × 10–3 | [123] | |
(Co-Ni-Pd)NPs-CNFs | MP | Pharmaceuticals Cosmetic Urine | PBS pH 7.0 | SWV | 3 × 10–3–0.3 | 1.2 × 10–3 | [127] | |
(Au-Ni-Co)NPs-CNFs | EP | Cosmetics Pharmaceuticals | PBS pH 7.0 | SWV | 1.0 × 10–3–0.1 | 3.5 × 10–4 | [112] | |
AuNPs | BHA BHT TBHQ | Food | BRB pH 2.0 | LSV | 0.55–8.32 0.91–9.98 1.2–16.8 | 0.22 0.36 0.48 | [142] | |
Pt-Pd NPs/CS/N-GN | Sulfite | Pharmaceutical | PBS pH 4.0 | DPV | 8–600 | 5.5 | [172] | |
GN-CS/AuNPs | Sulphite Nitrite | Water | PBS pH 7.5 | AMP | 5–410 1–380 | 1 0.25 | [159] | |
R-GNO/ZnO | Formaldehyde | Urine | PBS pH 7.4 hexamine | CV | nd | 0.023 | [31] | |
R-GNO-CS/AuNPs | MP | Standard solution | PBS pH 8.0 | SWV | 0.03–1.3 | 0.014 | [115] | |
R-GNO/RuNPs | MP | Cosmetics | PBS pH 7.0 | DPV | 0.50–3.00 | 0.24 | [111] | |
ERC60NRs-NH-Ph | EP | Cosmetics | PBS pH 7.0 | SWV | 0.01–0.52 | 3.8 × 10–3 | [114] | |
IrOxNPs | BHA | Standard solution | PBS pH 2.0 | CA | 1–280 | 0.6 | [30] | |
CuO/Cu2O-CPL6 | PrP | Standard solution | PBS pH 3.0 | DPV | 1–35.0 | 0.46 | [29] | |
CuV2O6 NBes | BA | Standard solution | KCl/H2O | CV | 1–2000 | 0.61 | [150] | |
PTh/CuBi2O4 NSNCs | BA | Water | KCl/H2O | CV | 1–2000 | 0.56 | [151] | |
CuGeO3 NWs | BA | Standard solution | KCl/H2O | CV | 1–2000 | 0.91 | [149] | |
PANI/CuGeO3 NWs | BA | Standard solution | KCl/H2O | CV | 1–2000 | 0.96 | [153] | |
In2O3 NBrs | BP | Cosmetics | PBS pH 7.0 | SWV | 0.14–2.4 | 0.08 | [28] | |
MnO2/R-GNO | TBHQ | Oil | PBS pH 7.0 | DPV | 1.0–50.0; 100.0–300.0 | 0.8 | [32] | |
MoS2/NAF | Sulfite | Water | Ac-B pH 3.6 | DPV | 5–500 | 3.3 | [173] | |
LaFeO3/GN | Sulfite | Food | PBS pH 7.0 | DPV | 1–200 | 0.21 | [174] | |
GN/Ch | TBHQ BHA | Food | PBS pH 3.0 | DPV | 0.40–120 0.60–200 | 0.14 0.19 | [143] | |
PPy | MP | Cosmetics | BRB pH 5.0/AN | DPV | 10–5000 | 8.0 | [121] | |
PPy-CS | Sulfite | Food | PBS pH 8.5 | DPV | 50–1100 | 0.21 | [175] | |
Fe3O4@Au-PPy/GO | TCS | Cosmetics Urine | PBS pH 9.0 | DPV | 0.01–1.0 | 2.5 × 10−3 | [161] | |
ANSA | 8-HQ | Cosmetics | BRB pH 2.0 | SWV | 0.5–425 | 0.16 | [162] | |
MIPs | MP, EP PrP BP | Cosmetics | PBS pH 6.5 | SWV | 20–100 5–100 5–80 | 0.4 0.2 0.2 | [130] | |
MIPs/PtAu-GN-MWCNTs | PrG | Oil | PBS pH 6.5 K3[Fe(CN)6], KCl | CA | 0.07–10 | 0.025 | [176] | |
PDDA-GN/PdNPs | TCS | Standard solution | PBS pH 7.0 | DPV | 9 × 10−3–20 | 3.5 × 10−3 | [160] | |
GNQDs | Thiomersal | Influenza vaccines | BRB pH 4, KCl | SWV | 3.0–32 | 0.9 | [94] | |
AgNPs/C3N4NTs@GNQDs/ILs | TCS | Wastewater | BRB pH 9.0 | DPV | 1.0 × 10−5–0.01 | 2.0 × 10−6 | [164] | |
α-ZrP@G-C3N4 | Nitrite | Food | PBS pH 7.0 | DPV AMP | 0.01–173 0.002–436 | 5 × 10–3 7 × 10–4 | [36] | |
LuHCF/poly(taurine) | Sulfite | Food | KCl/H2O | DPV | nd | 1.33 | [177] | |
Au3Pd4 | TBHQ Nitrite | Oil | PBS pH 6.5 | DPV | 2–4200 2–200 | 0.67 nd | [141] | |
Au3Pt3 | TBHQ | Oil | PBS pH 7.0 | DPV | 0.35–625 | 0.075 | ||
MTF/sulfite oxidase | Sulfite | Food | PBS pH 7.0 | DPV | 200–2800 | nd | [178] | |
BDD | BARE | Natamycin | Pharmaceuticals | H2SO4 | SWV | 0.89–8.26 | 0.20 | [179] |
H2SO4, SDS | 0.098–1.16 | 0.03 | ||||||
BHA BHT | Food | KNO3/H2O/EtOH | SWV | 0.60–10 0.60–10 | 0.14 0.25 | [146] | ||
BAC | Pharmaceuticals | TBAH/AN | SWV | 10–200 | 1.7 | [154] | ||
MP EP PrP | Aqueous matrix | Na2SO4 pH 7.0 EtOH/water | CV | 2–104 20–180 20–140 | 1.50 1.97 3.60 | [117] | ||
MP EP PrP | CA | 10–80 2–112 10–80 | 0.70 1.03 0.97 | |||||
MWCNTs | POC | BHA | Food | PBS pH 6.0 | DPV | 0.33–110 | 0.11 | [138] |
CP | MWCNTs | sulphite SO2 | Food | BRB pH 1.0 | SWV | 25–500 | 16 | [165] |
MWCNTs/Hb | MP | Urine Human serum | PBS pH 7.0 | DPV | 0.1–13 | 0.025 | [124] | |
MWCNTs-NAF-SEPperox | TBHQ | Food | PBS pH 7.0 | SWV | 9.93–59.08 | 2.47 | [135] | |
MIPs | PrP | Cosmetics | PBS pH 7.0 | DPV | 1 × 10–3–0.1 | 3.2 × 10–4 | [120] | |
PVI | Nitrite | Food | PBS pH 4.0 | DPV | 0.5–100 | 0.09 | [166] | |
FeNi3/R-GNO/HMPF6 | TBHQ | Food | H2O/EtOH pH 7.0 | SWV | 0.05–900 | 0.01 | [140] | |
NiTiO3 | OHB PHB | Cosmetics | BRB pH 5.0 | DPV | 10–1000 10–1000 | 0.39 0.10 | [180] | |
LaOx | Thiomersal | Vaccines Pharmaceuticals | PBS pH 3.0 | SWSV | 1.0–10.0 | 0.09 | [163] | |
PANI/ZnO | PrP | Standard solution | BRB pH 5.0 | DPV | 1.0–100.0 | 0.13 | [119] | |
Zn(OH)2-NPs | MP EP PrP BP | Standard solution | PBS pH 7.0 | DPV | 4–1255 100–1500 40–1050 11–230 | 3.21 4.01 11.30 3.12 | [116] | |
MP EP PrP BP | CV | 12–360 100–300 14–430 75–160 | 5.00 34.04 11.35 9.90 | |||||
GCP | BARE | 8-HQ | Standard solution | BRB pH 9.0/MetOH | DPV | 0.1–100 | 0.052 | [167] |
GNP | BF/IL | Sulphite | Water | PBS pH 8.0 | SWV | 0.05–250 | 0.02 | [168] |
MWCNTP | SLS | 8-HQ | Standard solution | PBS pH 7.0 | CV | 20–1000 | 0.11 | [169] |
SPC | BARE | SA | Food | BRB pH 2.0, NaCl | DPV | 1–200 | 1.6 | [181] |
SPC | MWCNTs | TBHQ BHA | Biodiesel | BRB pH 2.0/MetOH CTAB | LSV | 0.50–10 0.50–10 | 0.34 0.18 | [61] |
KA | Food | BRB pH 2.2 | DPV | 20–5000 | 16 | [62] | ||
Pt-CdS/MWCNTs | Natamycin | Food | H2SO4 pH 1.0 | DPV | 0.2–70.0 | 0.12 | [137] | |
CuO NFs/NH2-MWCNTs | TBHQ | Oil | PBS pH 6.0 | DPV | 0.01–147.6 | 3 × 10–3 | [63] | |
Fe3O4 | Nitrite | Standard solution | BRB pH 8.0 | SWV | nd | 0.013 | [64] | |
CoSe2@R-GNO | PrG | Food | PBS pH 7.0 | DPV | 0.075–460.2 | 0.016 | [182] | |
CNC-R-GNO | MP | Cosmetics | PBS pH 7.0 | DPV | 200–900 | 100 | [133] | |
3D GNO-Co3O4PHs | H2O2 | Disinfectant cleaning solutions | PBS pH 7.0 | AMP | 0.05–400; 450–1250 | 0.015 | [66] | |
CF | BARE | BHA BHT | Pharmaceuticals | AcH-AN, NaClO4 | DPV | 0.17–3299 0.82–4181 | 0.06 0.27 | [136] |
MP PrP | Pharmaceuticals | AcH-AN, AcNa | DPV | 5.85–267.7 6.66–203.2 | 0.52 0.55 | [118] | ||
SA | Pharmaceutical | PBS pH 7.4 | DPV | 2.0–3000 | 1.68 | [183] | ||
MCI MIT | Cosmetics | LiClO4/H2O | DPV | 26.7–1538 17.4–2259 | nd | [184] | ||
G | NAPCF | BHA | Food | NaNO3, PBS pH 7.0 | CV CA | 0.62–219 0.58–5.03 | 0.25 | [148] |
EPPG | SWCNT-Co | Nitrite | Standard solution | PBS pH 3.0 PBS pH 7.4 | AdSV | Nd | 11.6 8.4 | [185] |
PG | p-Phe-MP | MP | Pharmaceuticals Cosmetics | BRB pH 2.0 | DPV | 10–5000 | 10 | [125] |
oPPy-β-CD-PMo12 | PrP | Cosmetics | BRB pH 6.0 | DPV | 0.2–100 | 0.04 | [126] | |
GWc | CoHCF | BHA | Food | NaCl/H2O | CA | 0.79–190 | 0.19 | [134] |
Teflon–tyrosinase | BA | Food | PBS pH 7.4, AOT | AMP | 1.0–40 | 0.90 | [152] | |
MCc | Cu3(PO4)2-Poly | BHA BHT | Food | KNO3 pH 6.7/EtOH | SWV | 0.34–41 | 0.072 0.093 | [147] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bojarowicz, H.; Fronczak, P.; Krysiński, J. Can cosmetics be preservative-free? Hygeia Public Health 2018, 53, 124–131. [Google Scholar]
- Bojarowicz, H.; Wojciechowska, M.; Gocki, J. Preservatives used in cosmetics and their undesirable effects. Probl. Hig. Epidemiol. 2008, 89, 30–33. [Google Scholar]
- Davidson, P.M.; Sofos, J.N.; Branen, A.L. Antimicrobials in Food, 3rd ed.; Davidson, P.M., Sofos, J.N., Branen, A.L., Eds.; Taylor & Francis: Boca Raton, FL, USA; London, UK; New York, NY, USA; Singapore, 2005; ISBN 0-8247-4037-8. [Google Scholar]
- Blanc, R.; González-Casado, A.; Navalón, A.; Vílchez, J.L. On the estimate of blanks in differential pulse voltammetric techniques: Application to detection limits evaluation as recommended by IUPAC. Anal. Chim. Acta 2000, 403, 117–123. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Zheng, J. Anodic voltammetric behavior of resveratrol and its electroanalytical determination in pharmaceutical dosage form and urine. Talanta 2007, 71, 19–24. [Google Scholar] [CrossRef]
- Brett, C.M.A.; Brett, A.M.O. Electroanalysis; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Marin, M.; Lete, C.; Manolescu, B.N.; Lupu, S. Electrochemical determination of α-lipoic acid in human serum at platinum electrode. J. Electroanal. Chem. 2014, 729, 128–134. [Google Scholar] [CrossRef]
- Corduneanu, O.; Garnett, M.; Brett, A.M.O. Anodic oxidation of α-lipoic acid at a glassy carbon electrode and its determination in dietary supplements. Anal. Lett. 2007, 40, 1763–1778. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim. Acta 2015, 182, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Real-time electrochemical monitoring: Toward green analytical chemistry. Acc. Chem. Res. 2002, 35, 811–816. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 2nd ed.; WILEY-VCH: New York, NY, USA, 2000. [Google Scholar]
- Scholz, F. Electroanalytical Methods. Guide to Experiments and Applications. Second Revised and Extended Edition; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ozkan, S.A.; Kauffmann, J.-M.; Zuman, P. Electroanalysis in Biomedical and Pharmaceutical Sciences; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-47137-1. [Google Scholar]
- Heyrovsky, J. Electrolysis uith a Dropping Mercury Cathode. Philos. Mag. J. Sci. 1923, 45, 303–315. [Google Scholar] [CrossRef]
- Kissinger, P.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry, Second edition, Revised and Expanded; Marcel Dekker: New York, NY, USA, 1996. [Google Scholar]
- Ferreira, M.; Varela, H.; Torresi, R.M.; Tremiliosi-Filho, G. Electrode passivation caused by polymerization of different phenolic compounds. Electrochim. Acta 2006, 52, 434–442. [Google Scholar] [CrossRef]
- Levent, A.; Yardim, Y.; Şentürk, Z. Electrochemical performance of boron-doped diamond electrode in surfactant-containing media for ambroxol determination. Sens. Actuators B Chem. 2014, 203, 517–526. [Google Scholar] [CrossRef]
- Mccreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef]
- Adams, R.N. Carbon paste electrodes. Anal. Chem. 1958, 30, 1576. [Google Scholar] [CrossRef]
- Kour, R.; Arya, S.; Young, S.-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review—Recent advances in carbon nanomaterials as Electrochemical biosensors. J. Electrochem. Soc. 2020, 167, 037555. [Google Scholar] [CrossRef]
- Hu, X.; You, S.; Li, F.; Liu, Y. Recent advances in antimony removal using carbon-based nanomaterials: A review. Front. Environ. Sci. Eng. 2022, 16, 48. [Google Scholar] [CrossRef]
- Yang, N.; Swain, G.M.; Jiang, X. Nanocarbon electrochemistry and electroanalysis: Current status and future perspectives. Electroanalysis 2016, 28, 27–34. [Google Scholar] [CrossRef]
- Sequeira, C.A.C. Carbon anode in carbon history. Molecules 2020, 25, 4996. [Google Scholar] [CrossRef]
- Yin, H.; Ma, Q.; Zhou, Y.; Ai, S.; Zhu, L. Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim. Acta 2010, 55, 7102–7108. [Google Scholar] [CrossRef]
- Banks, C.E.; Compton, R.G. New electrodes for old: From carbon nanotubes to edge plane pyrolytic graphite. Analyst 2006, 131, 15–21. [Google Scholar] [CrossRef]
- Jadon, N.; Jain, R.; Sharma, S.; Singh, K. Recent trends in electrochemical sensors for multianalyte detection—A review. Talanta 2016, 161, 894–916. [Google Scholar] [CrossRef] [PubMed]
- Qurashi, A.; Rather, J.A.; Yamazaki, T.; Sohail, M.; De Wael, K.; Merzougui, B.; Hakeem, A.S. Swift electrochemical detection of paraben an endocrine disruptor by In2O3 nanobricks. Sens. Actuators B. Chem. 2015, 221, 167–171. [Google Scholar] [CrossRef]
- Goulart, L.A.; Guaraldo, T.T.; Lanza, M.R.V. A Novel Electrochemical Sensor Based on Printex L6 Carbon Black Carrying CuO/Cu2O Nanoparticles for Propylparaben Determination. Electroanalysis 2018, 30, 2967–2976. [Google Scholar] [CrossRef]
- Roushani, M.; Sarabaegi, M. Electrochemical detection of butylated hydroxyanisole based on glassy carbon electrode modified by iridium oxide nanoparticles. J. Electroanal. Chem. 2014, 717, 147–152. [Google Scholar] [CrossRef]
- Padmalaya, G.; Sreeja, B.S.; Shoba, S.; Rajavel, R.; Radha, S.; Arivanandan, M.; Shrestha, S. Synthesis of micro-dumbbell shaped rGO/ZnO composite rods and its application towards as electrochemical sensor for the simultaneous determination of ammonia and formaldehyde using hexamine and its structural analysis. J. Inorg. Organomet. Polym. Mater. 2020, 30, 943–954. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y.; Zhuang, Q.; Wang, L.; Ni, Y. Developing an electrochemical sensor for the detection of tert-butylhydroquinone. Sens. Actuators B Chem. 2019, 293, 321–328. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Jafari–Asl, M.; Rezaei, B. A novel enzyme-free amperometric sensor for hydrogen peroxide based on Nafion/exfoliated graphene oxide–Co3O4 nanocomposite. Talanta 2013, 103, 322–329. [Google Scholar] [CrossRef]
- Kong, L.; Ren, Z.; Zheng, N.; Du, S.; Wu, J.; Tang, J.; Fu, H. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480. [Google Scholar] [CrossRef]
- Kaçar, C.; Dalkiran, B.; Erden, P.E.; Kiliç, E. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode. Appl. Surf. Sci. 2014, 311, 139–146. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Hsu, Y.-F.; Wang, S.-F.; George, M. Zirconium Phosphate Supported on g-C3N4 Nanocomposite for Sensitive Detection of Nitrite. J. Electrochem. Soc. 2021, 168, 087502. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Yang, M. A double-potential ratiometric electrochemiluminescence platform based on g-C3N4 nanosheets (g-C3N4NSs) and graphene quantum dots for Cu 2+ detection. Anal. Methods 2021, 13, 903–909. [Google Scholar] [CrossRef]
- Dicks, A.L. The role of carbon in fuel cells. J. Power Sources 2006, 156, 128–141. [Google Scholar] [CrossRef]
- Keyte, J.; Pancholi, K.; Njuguna, J. Recent Developments in Graphene Oxide/Epoxy Carbon Fiber-Reinforced Composites. Front. Mater. 2019, 6, 1–30. [Google Scholar] [CrossRef]
- Banks, C.E.; Compton, R.G. Edge plane pyrolytic graphite electrodes in electroanalysis: An overview. Anal. Sci. 2005, 21, 1263–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrinha, Á.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. Biosensing based on pencil graphite electrodes. Talanta 2018, 190, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Luong, J.H.T.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst 2009, 134, 1965–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraft, A. Doped diamond: A compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2007, 2, 355–385. [Google Scholar]
- Baluchová, S.; Daňhel, A.; Dejmková, H.; Ostatná, V.; Fojta, M.; Schwarzová-Pecková, K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules–A review. Anal. Chim. Acta 2019, 1077, 30–66. [Google Scholar] [CrossRef] [PubMed]
- Muzyka, K.; Sun, J.; Fereja, T.H.; Lan, Y.; Zhang, W.; Xu, G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Methods 2019, 11, 397–414. [Google Scholar] [CrossRef]
- Pelskov, Y.V.; Sakharova, A.Y.; Krotova, M.D.; Bouilov, L.L.; Spitsyn, B.V. Photoelectrochemical properties of semiconductor diamond. J. Electroanal. Chem. 1987, 228, 19–27. [Google Scholar] [CrossRef]
- Patel, K.; Hashimoto, K.; Fujishima, A. Application of Boron-Doped CVD-Diamond Film to Photoelectrode. Denki Kagaku 1992, 60, 659–661. [Google Scholar] [CrossRef] [Green Version]
- Actis, P.; Denoyelle, A.; Boukherroub, R.; Szunerits, S. Influence of the surface termination on the electrochemical properties of boron-doped diamond (BDD) interfaces. Electrochem. Commun. 2008, 10, 402–406. [Google Scholar] [CrossRef]
- Oliveira, S.C.B.; Oliveira-Brett, A.M. Boron doped diamond electrode pre-treatments effect on the electrochemical oxidation of dsDNA, DNA bases, nucleotides, homopolynucleotides and biomarker 8-oxoguanine. J. Electroanal. Chem. 2010, 648, 60–66. [Google Scholar] [CrossRef]
- Svancara, I.; Vytras, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Svancara, I.; Vyt, K.; Svancara, J.; Zima, J. Critical Reviews in Analytical Chemistry Carbon Paste Electrodes in Modern Electroanalysis Electroanalysis. Crit. Rev. Anal. Chem. 2001, 31, 311–345. [Google Scholar] [CrossRef]
- Svancara, I.; Kalcher, K.; Walcarius, A.; Vytřas, K. Electroanalysis with Carbon Paste Electrodes; CRC Press: New York, NY, USA, 2012; ISBN 9781439830208. [Google Scholar]
- Vytras, K.; Svancara, I.; Metelka, R. Carbon paste electrodes in electroanalytical chemistry. J. Serbian Chem. Soc. 2009, 74, 1021–1033. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, Y.; Zhang, Y.; Zhang, M.; Zhang, Y.; Qiao, L.; Yin, N.; Song, K.; Liu, M.; Wang, D. Recent advances in carbon nanomaterials-based electrochemical sensors for phenolic compounds detection. Microchem. J. 2021, 171, 106776. [Google Scholar] [CrossRef]
- Zaidi, S.A. Graphene: A comprehensive review on its utilization in carbon paste electrodes for improved sensor performances. Int. J. Electrochem. Sci. 2013, 8, 11337–11355. [Google Scholar]
- Elrouby, M. Electrochemical applications of carbon nanotube. J. Nanotechnol. Adv. Mater. 2013, 1, 23–38. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Safaei, M.; Zhang, K.; Van Le, Q.; Varma, R.S.; Jang, H.W.; Shokouhimehr, M. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Adv. 2020, 10, 21561–21581. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.-T.; Li, D.-W.; Long, Y.-T. Recent developments and applications of screen-printed electrodes in environmental assays—A review. Anal. Chim. Acta 2012, 734, 31–44. [Google Scholar] [CrossRef]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067. [Google Scholar] [CrossRef] [PubMed]
- Sosa, V.; Barceló, C.; Serrano, N.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Antimony film screen-printed carbon electrode for stripping analysis of Cd(II), Pb(II), and Cu(II) in natural samples. Anal. Chim. Acta 2015, 855, 34–40. [Google Scholar] [CrossRef]
- Caramit, R.P.; De Freitas Andrade, A.G.; Gomes De Souza, J.B.; De Araujo, T.A.; Viana, L.H.; Trindade, M.A.G.; Ferreira, V.S. A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi-walled carbon nanotube screen-printed electrodes. Fuel 2013, 105, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Buleandra, M.; Rabinca, A.A.; Tache, F.; Moldovan, Z.; Stamatin, I.; Mihailciuc, C.; Ciucu, A.A. Rapid voltammetric detection of kojic acid at a multi-walled carbon nanotubes screen-printed electrode. Sens. Actuators B Chem. 2017, 241, 406–412. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.-Y.; Sebastian, N.; Rasana, N. Ultrasensitive detection of cytotoxic food preservative tert-butylhydroquinone using 3D cupric oxide nanoflowers embedded functionalized carbon nanotubes. J. Hazard. Mater. 2021, 406, 124792. [Google Scholar] [CrossRef] [PubMed]
- Rosida, E.M.; Mulyasuryani, A.; Tjahjanto, R.T. Modification of Screen Printed Carbon Electrode (SPCE) with Fe3O4 for the Determination of Nitrite (NO2-) in Squarewave Voltammetry. Molekul 2017, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Kogularasu, S.; Akilarasan, M.; Chen, S.-M.; Elaiyappillai, E.; Johnson, P.M.; Chen, T.-W.; Al-Hemaid, F.M.A.; Ali, M.A.; Elshikh, M.S. A comparative study on conventionally prepared MnFe2O4 nanospheres and template-synthesized novel MnFe2O4 nano-agglomerates as the electrodes for biosensing of mercury contaminations and supercapacitor applications. Electrochim. Acta 2018, 290, 533–543. [Google Scholar] [CrossRef]
- Kogularasu, S.; Govindasamy, M.; Chen, S.-M.; Akilarasan, M.; Mani, V. 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens. Actuators B Chem. 2017, 253, 773–783. [Google Scholar] [CrossRef]
- Mohammadzadeh Kakhki, R. A review to recent developments in modification of carbon fiber electrodes. Arab. J. Chem. 2019, 12, 1783–1794. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Liang, L.; Teh, K.; Xie, Y.; Wan, Z.; Tang, Y. The Electrochemical Behavior of Carbon Fiber Microelectrodes Modified with Carbon Nanotubes Using a Two-Step Electroless Plating/Chemical Vapor Deposition Process. Sensors 2017, 17, 725. [Google Scholar] [CrossRef] [Green Version]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Manciu, F.S.; Oh, Y.; Barath, A.; Rusheen, A.E.; Kouzani, A.Z.; Hodges, D.; Guerrero, J.; Tomshine, J.; Lee, K.H.; Bennet, K.E. Analysis of Carbon-Based Microelectrodes for Neurochemical Sensing. Materials 2019, 12, 3186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, S.; Morin, S.; Stevenson, K.J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 2006, 44, 1429–1437. [Google Scholar] [CrossRef]
- Bond, A.M. Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review. Analyst 1994, 119, R1–R21. [Google Scholar] [CrossRef]
- Budai, D.; Hernádi, I.; Mészáros, B.; Bali, Z.K.; Gulya, K. Electrochemical responses of carbon fiber microelectrodes to dopamine in vitro and in vivo. Acta Biol. Szeged. 2010, 54, 155–160. [Google Scholar]
- Guo, S.; Dong, S. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672. [Google Scholar] [CrossRef]
- Guo, S.; Wen, D.; Zhai, Y.; Dong, S.; Wang, E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959–3968. [Google Scholar] [CrossRef] [PubMed]
- Otero, F.; Magner, E. Biosensors–Recent advances and future challenges. Sensors 2020, 20, 3561. [Google Scholar] [CrossRef]
- Porto, L.S.; Silva, D.N.; de Oliveira, A.E.F.; Pereira, A.C.; Borges, K.B. Carbon nanomaterials: Synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Rev. Anal. Chem. 2019, 38, 20190017. [Google Scholar] [CrossRef]
- Krueger, A. Carbon Materials and Nanotechnology; WILEY-VCH: Weinheim, Germany, 2010; ISBN 9783527318032. [Google Scholar]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Acquah, S.F.A.; Penkova, A.V.; Markelov, D.A.; Semisalova, A.S.; Leonhardt, B.E.; Magi, J.M. Review—The Beautiful Molecule: 30 Years of C 60 and Its Derivatives. ECS J. Solid State Sci. Technol. 2017, 6, M3155–M3162. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Trojanowicz, M. Analytical applications of carbon nanotubes: A review. TrAC-Trends Anal. Chem. 2006, 25, 480–489. [Google Scholar] [CrossRef]
- Yang, W.; Ratinac, K.R.; Ringer, S.R.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chemie-Int. Ed. 2010, 49, 2114–2138. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens. Bioelectron. 2016, 79, 136–149. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Y.; Chen, Y. Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 2012, 45, 598–607. [Google Scholar] [CrossRef]
- Ghany, N.A.A.; Elsherif, S.A.; Handal, H.T. Revolution of Graphene for different applications: State-Of-The-Art. Surf. Interfaces 2017, 9, 93–106. [Google Scholar] [CrossRef]
- Chen, X.-M.; Wu, G.; Jiang, Y.; Wang, Y.; Chen, X. Graphene and graphene-based nanomaterials: The promising materials for bright future of electroanalytical chemistry. Analyst 2011, 136, 4631–4640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Escarpa, A. Graphene: The cutting-edge interaction between chemistry and electrochemistry. TrAC-Trends Anal. Chem. 2014, 56, 13–26. [Google Scholar] [CrossRef]
- Pedrozo-Penafiel, M.J.; Miranda-Andrades, J.R.; Gutierrez-Beleño, L.M.; Larrudé, D.G.; Aucelio, R.Q. Indirect voltammetric determination of thiomersal in influenza vaccine using photo-degradation and graphene quantum dots modified glassy carbon electrode. Talanta 2020, 215, 120938. [Google Scholar] [CrossRef]
- KEMI – Swedish Chemicals Agency. Available online: https://www.kemi.se/en/statistics/statistics-in-brief/products-and-sectors/preservatives (accessed on 2 October 2021).
- Thomas, A.; Vikraman, A.E.; Thomas, D.; Kumar, K.G. Voltammetric Sensor for the Determination of TBHQ in Coconut Oil. Food Anal. Methods 2015, 8, 2028–2034. [Google Scholar] [CrossRef]
- Squissato, A.L.; Richter, E.M.; Munoz, R.A.A. Voltammetric determination of copper and tert-butylhydroquinone in biodiesel: A rapid quality control protocol. Talanta 2019, 201, 433–440. [Google Scholar] [CrossRef]
- Abad-Gil, L.; Gismera, M.J.; Sevilla, M.T.; Procopio, J.R. Determination of methylisothiazolinone in waters. Comprehensive study about electrochemical behaviour on gold electrode and optimization of square-wave voltammetric methods. J. Electroanal. Chem. 2021, 880, 114831. [Google Scholar] [CrossRef]
- Yücebaş, B.B.; Yaman, Y.T.; Bolat, G.; Özgür, E.; Uzun, L.; Abaci, S. Molecular imprinted polymer based electrochemical sensor for selective detection of paraben. Sens. Actuators B Chem. 2020, 305, 127368. [Google Scholar] [CrossRef]
- Chýlková, J.; Šelešovská, R.; Machalíková, J.; Dušek, L. Differentiation between phenol- and amino-substances in voltammetry determination of synthetic antioxidants in oils. Cent. Eur. J. Chem. 2010, 8, 607–616. [Google Scholar] [CrossRef]
- Jian, K.; Yang, L.; Chao, B.; Jianhua, T.; Jizhou, S.; Shanhong, X. Microelectrode arrays modified with copper for nitrate determination. High Power Laser Part Beams 2015, 27, 024122. [Google Scholar] [CrossRef]
- Rasheed, Z.; Vikraman, A.E.; Thomas, D.; Jagan, J.S.; Kumar, K.G. Carbon-Nanotube-Based Sensor for the Determination of Butylated Hydroxyanisole in Food Samples. Food Anal. Methods 2015, 8, 213–221. [Google Scholar] [CrossRef]
- Schaumlöffel, L.D.S.; Bolognese Fernandes, P.R.; Sartori Piatnicki, C.M.; Gutterres, M. A Chemometric-Assisted Voltammetric Method for Simultaneous Determination of Four Antioxidants in Biodiesel Samples. Energy Fuels 2020, 34, 412–418. [Google Scholar] [CrossRef]
- Chen, C.C.; Ho, J.H.; Hsu, C.L. Development of an electrochemical method for quantitative determination of benzoic acid in foods. Taiwan. J. Agric. Chem. Food Sci. 2020, 58, 68–75. [Google Scholar] [CrossRef]
- Khodari, M.; Mersal, G.; Abd El-Raady, A.; El-Desuki, B. Electroanalytical Determination of Benzoic, Oxalic and Glyoxylic Acids Using Platinum Electrode. Curr. Drug Ther. 2014, 9, 226–231. [Google Scholar] [CrossRef]
- Jakubczyk, M.; Michalkiewicz, S. First Voltammetric Method of Phenoxyethanol Determination in Pharmaceutical and Cosmetic Preparations. J. Electrochem. Soc. 2019, 166, H291–H296. [Google Scholar] [CrossRef]
- Jakubczyk, M.; Michalkiewicz, S.; Skorupa, A.; Slefarska, D. Voltammetric Determination of Isopropylmethylphenols in Herbal Spices. Molecules 2021, 26, 6095. [Google Scholar] [CrossRef]
- González-Cortés, A.; Armisén, P.; Asunción Ruiz, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electroanalytical study of the antioxidanttert-butylhydroquinone (TBHQ) in an oil-in-water emulsified medium. Electroanalysis 1994, 6, 1014–1019. [Google Scholar] [CrossRef]
- Gratteri, P.; Furlanetto, S.; Pinzauti, S.; La Porta, E.; Mura, P.; Santoni, G. Adsorptive assay stripping voltammetry for thiomersal. J. Pharm. Biomed. Anal. 1994, 12, 273–276. [Google Scholar] [CrossRef]
- Piech, R.; Wymazała, J.; Smajdor, J.; Paczosa-Bator, B. Thiomersal determination on a renewable mercury film silver-based electrode using adsorptive striping voltammetry. Anal. Methods 2016, 8, 1187–1193. [Google Scholar] [CrossRef]
- Mendonça, C.D.; Prado, T.M.; Cincotto, F.H.; Verbinnen, R.T.; Machado, S.A.S. Methylparaben quantification via electrochemical sensor based on reduced graphene oxide decorated with ruthenium nanoparticles. Sens. Actuators B Chem. 2017, 251, 739–745. [Google Scholar] [CrossRef]
- Baytak, A.K.; Teker, T.; Duzmen, S.; Aslanoglu, M. A novel electrochemical platform based on carbon nanofibers and tri-metallic nanoparticles of gold, nickel and cobalt for the quantification of ethyl paraben. Mater. Sci. Eng. C 2017, 72, 301–307. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Li, G.; Ye, B. A new strategy for enhancing electrochemical sensing from MWCNTs modified electrode with Langmuir-Blodgett film and used in determination of methylparaben. Sens. Actuators B Chem. 2015, 211, 332–338. [Google Scholar] [CrossRef]
- Rather, J.A.; Al Harthi, A.J.; Khudaish, E.A.; Qurashi, A.; Munam, A.; Kannan, P. An electrochemical sensor based on fullerene nanorods for the detection of paraben, an endocrine disruptor. Anal. Methods 2016, 8, 5690–5700. [Google Scholar] [CrossRef]
- Piovesan, J.V.; Santana, E.R.; Spinelli, A. Reduced graphene oxide/gold nanoparticles nanocomposite-modified glassy carbon electrode for determination of endocrine disruptor methylparaben. J. Electroanal. Chem. 2018, 813, 163–170. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Saghatforoush, L.; Mehdizadeh, R.; Sanati, S. Electrocatalytic oxidation of selected parabens on zinc hydroxide nanoparticles. Catal. Commun. 2012, 19, 10–16. [Google Scholar] [CrossRef]
- Radovan, C.; Cinghita, D.; Manea, F.; Mincea, M.; Cofan, C.; Ostafe, V. Electrochemical Sensing and Assessment of Parabens in Hydro- Alcoholic Solutions and Water Using a Boron-Doped Diamond Electrode. Sensors 2008, 8, 4330–4349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalkiewicz, S.; Jakubczyk, M.; Skorupa, A. Voltammetric Determination of Total Content of Parabens at a Carbon Fiber Microelectrode in Pharmaceutical Preparations. Int. J. Electrochem. Sci. 2016, 11, 1661–1675. [Google Scholar]
- Manasa, G.; Mascarenhas, R.J.; Basavaraja, B.M. Sensitively-selective determination of Propyl Paraben preservative based on synergistic effects of polyaniline-zinc-oxide nano-composite incorporated into graphite paste electrode. Colloids Surf. B Biointerfaces 2019, 184, 110529. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Shamsipur, M.; Dehdashtian, S.; Rajabi, H.R. Development of a selective and sensitive voltammetric sensor for propylparaben based on a nanosized molecularly imprinted polymer-carbon paste electrode. Mater. Sci. Eng. C 2014, 36, 102–107. [Google Scholar] [CrossRef]
- Madakbaş, S.; Kamiloǧlu, S.; Yetimoǧlu, E.K. Determination of methylparaben by differential pulse voltammetry using a glassy carbon electrode modified with polypyrrole. J. Anal. Chem. 2015, 70, 725–730. [Google Scholar] [CrossRef]
- Dantas, M.S.R.; Lourenço, A.S.; Silva, A.C.; Bichinho, K.M.; Araujo, M.C.U. Simultaneous determination of methyl, ethyl, propyl, and butyl parabens in sweetener samples without any previous pretreatment using square wave voltammetry and multiway calibration. Food Chem. 2021, 365, 130472. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.; Álvarez-Prada, I.; Lopez-Lopez, E.; Escriche, L.; Romero, N.; Sala, X.; Mas-Torrent, M.; García-Antón, J. Synthesis of 0D to 3D hybrid-carbon nanomaterials carrying platinum(0) nanoparticles: Towards the electrocatalytic determination of methylparabens at ultra-trace levels. Sens. Actuators B Chem. 2020, 305, 127467. [Google Scholar] [CrossRef]
- Hajian, A.; Ghodsi, J.; Afraz, A.; Yurchenko, O.; Urban, G. Nanomolar detection of methylparaben by a cost-effective hemoglobin-based biosensor. Mater. Sci. Eng. C 2016, 69, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Soysal, M. An Electrochemical Sensor Based on Molecularly Imprinted Polymer for Methyl Paraben Recognition and Detection. J. Anal. Chem. 2021, 76, 381–389. [Google Scholar] [CrossRef]
- Hatami, E.; Ashraf, N.; Arbab-Zavar, M.H. Construction of β-Cyclodextrin-phosphomolybdate grafted polypyrrole composite: Application as a disposable electrochemical sensor for detection of propylparaben. Microchem. J. 2021, 168, 106451. [Google Scholar] [CrossRef]
- Baytak, A.K.; Duzmen, S.; Teker, T.; Aslanoglu, M. Voltammetric determination of methylparaben and its DNA interaction using a novel platform based on carbon nanofibers and cobalt-nickel-palladium nanoparticles. Sens. Actuators B Chem. 2017, 239, 330–337. [Google Scholar] [CrossRef]
- Luo, P.; Liu, J.; Li, Y.; Miao, Y.; Ye, B. Voltammetric Determination of Methylparaban in Cosmetics Using a Multi-Wall Carbon Nanotubes/Nafion Composite Modified Glassy Carbon Electrode. Anal. Lett. 2012, 45, 2445–2454. [Google Scholar] [CrossRef]
- Mielech-Łukasiewicz, K.; Puzanowska-Tarasiewicz, H.; Niedzielko, A. Electrooxidation of some antifungal agents and their square-wave voltammetric determination in cosmetics and pharmaceutics. Anal. Lett. 2011, 44, 955–967. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Fang, C.; Gong, Q. Electrochemical sensor for parabens based on molecular imprinting polymers with dual-templates. Anal. Chim. Acta 2010, 673, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.E.R.; De Souza, N.E.; Galinaro, C.A.; Arriveti, L.O.R.; De Assis, J.B.; Tremiliosi-Filho, G. Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes. J. Electroanal. Chem. 2016, 769, 124–130. [Google Scholar] [CrossRef]
- Lorenzo, M.Á.; Sánchez Arribas, A.; Moreno, M.; Bermejo, E.; Chicharro, M.; Zapardiel, A. Determination of butylparaben by adsorptive stripping voltammetry at glassy carbon electrodes modified with multi-wall carbon nanotubes. Microchem. J. 2013, 110, 510–516. [Google Scholar] [CrossRef]
- Faradillawan Khalid, W.E.; Nasir Mat Arip, M.; Jasmani, L.; Heng Lee, Y. A new sensor for methyl paraben using an electrode made of a cellulose nanocrystal–reduced graphene oxide nanocomposite. Sensors 2019, 19, 2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabakar, S.J.R.; Narayanan, S.S. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: An amperometric sensor for determination of butylated hydroxyanisole (BHA). Anal. Bioanal. Chem. 2006, 386, 2107–2115. [Google Scholar] [CrossRef]
- De Oliveira, T.R.; Ferreira Grawe, G.; Moccelini, S.K.; Terezo, A.J.; Castilho, M. Enzymatic biosensors based on ingã-cipã peroxidase immobilised on sepiolite for TBHQ quantification. Analyst 2014, 139, 2214–2220. [Google Scholar] [CrossRef]
- Jakubczyk, M.; Michalkiewicz, S. Electrochemical behavior of butylated hydroxyanisole and butylated hydroxytoluene in acetic acid solutions and their voltammetric determination in pharmaceutical preparations. Int. J. Electrochem. Sci. 2018, 13, 4251–4266. [Google Scholar] [CrossRef]
- Yousefi, A.; Babaei, A.; Delavar, M. Application of modified screen-printed carbon electrode with MWCNTs-Pt-doped CdS nanocomposite as a sensitive sensor for determination of natamycin in yoghurt drink and cheese. J. Electroanal. Chem. 2018, 822, 1–9. [Google Scholar] [CrossRef]
- Manoranjitham, J.J.; Narayanan, S.S. Electrochemical sensor for determination of butylated hydroxyanisole (BHA) in food products using poly O-cresolphthalein complexone coated multiwalled carbon nanotubes electrode. Food Chem. 2021, 342, 128246. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Guss, E.; Budnikov, H. Amperometric sensor based on MWNT and electropolymerized carminic acid for the simultaneous quantification of TBHQ and BHA. J. Electroanal. Chem. 2020, 859, 113885. [Google Scholar] [CrossRef]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos. Part B Eng. 2019, 172, 666–670. [Google Scholar] [CrossRef]
- Chen, T.; Xu, J.; Yang, P.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T.; Zhou, M.; Wang, C. Facile controlled synthesis of AuPd and AuPt bimetallic nanocrystals for enhanced electrocatalytic sensing. Sens. Actuators B Chem. 2019, 298, 126724. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal. Chim. Acta 2013, 765, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Han, C.; Zhou, F.; Lu, J.; Han, X.; Wang, Z. Electrochemical determination of tert-butylhydroquinone and butylated hydroxyanisole at choline functionalized film supported graphene interface. Sens. Actuators B Chem. 2016, 224, 885–891. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, L.; Kokot, S. Voltammetric determination of butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate and tert-butylhydroquinone by use of chemometric approaches. Anal. Chim. Acta 2000, 412, 185–193. [Google Scholar] [CrossRef]
- Dos Santos Raymundo, M.; Marques da Silva Paula, M.; Franco, C.; Fett, R. Quantitative determination of the phenolic antioxidants using voltammetric techniques. LWT-Food Sci. Technol. 2007, 40, 1133–1139. [Google Scholar] [CrossRef]
- Medeiros, R.A.; Rocha-Filho, R.C.; Fatibello-Filho, O. Simultaneous voltammetric determination of phenolic antioxidants in food using a boron-doped diamond electrode. Food Chem. 2010, 123, 886–891. [Google Scholar] [CrossRef]
- Freitas, K.H.G.; Fatibello-Filho, O. Simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food samples using a carbon composite electrode modified with Cu3(PO4)2 immobilized in polyester resin. Talanta 2010, 81, 1102–1108. [Google Scholar] [CrossRef]
- Kumar, S.S.; Narayanan, S.S. Mechanically immobilized nickel aquapentacyanoferrate modified electrode as an amperometric sensor for the determination of BHA. Talanta 2008, 76, 54–59. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Pei, L.Z.; Xie, Y.K.; Fan, C.G.; Fu, D.G. Electrochemical determination of benzoic acid using CuGeO3 nanowire modified glassy carbon electrode. Meas. Sci. Technol. 2013, 24, 095701. [Google Scholar] [CrossRef]
- Lin, N.; Pei, L.Z.; Wei, T.; Liu, H.D.; Cai, Z.Y. Electrochemical sensor based on glassy carbon electrode modified with copper vanadate nanobelts for detection of benzoic acid. IET Sci. Meas. Technol. 2016, 10, 247–252. [Google Scholar] [CrossRef]
- Guo, X.Y.; Mao, Y.J.; Yu, C.H.; Qiu, F.L.; Pei, L.Z.; Ling, X.Z.; Zhang, Y.; Wang, M.C.; Fan, C.G. Polythiopene/copper bismuthate nanosheet nanocomposites modified glassy carbon electrode for electrochemical detection of benzoic acid. Int. J. Electrochem. Sci. 2020, 15, 10463–10475. [Google Scholar] [CrossRef]
- Morales, M.D.; Morante, S.; Escarpa, A.; González, M.C.; Reviejo, A.J.; Pingarrón, J.M. Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food. Talanta 2002, 57, 1189–1198. [Google Scholar] [CrossRef]
- Pei, L.Z.; Cai, Z.Y.; Xie, Y.K.; Fu, D.G. Electrochemical behaviors of benzoic acid at polyaniline/CuGeO3 nanowire modified glassy carbon electrode. Meas. J. Int. Meas. Confed. 2014, 53, 62–70. [Google Scholar] [CrossRef]
- Alghamdi, H.; Alsaeedi, M.; Buzid, A.; Glennon, J.D.; Luong, J.H.T. Electroanalysis of Benzalkonium Chloride in Ophthalmic Formulation by Boron-doped Diamond Electrode. Electroanalysis 2021, 33, 1137–1142. [Google Scholar] [CrossRef]
- Guo, S.; Wu, X.; Zhou, J.; Wang, J.; Yang, B.; Ye, B. MWNT/Nafion composite modified glassy carbon electrode as the voltammetric sensor for sensitive determination of 8-hydroxyquinoline in cosmetic. J. Electroanal. Chem. 2011, 655, 45–49. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Heng, Y.; Wang, F. Facile fabrication of 3D graphene–multi walled carbon nanotubes network and its use as a platform for natamycin detection. J. Electroanal. Chem. 2018, 816, 54–61. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Budnikov, H. MWNT-Based Electrode for the Voltammetric Quantification of Carvacrol. Food Anal. Methods 2021, 14, 401–410. [Google Scholar] [CrossRef]
- Manusha, P.; Senthilkumar, S. Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples. J. Mol. Liq. 2020, 301, 112412. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Wu, M.; Ge, S.L.; Zhu, Y.; Wang, Q.J.; He, P.G.; Fang, Y.Z. Simultaneous electrochemical determination of sulphite and nitrite by a gold nanoparticle/graphene-chitosan modified electrode. Chin. J. Anal. Chem. 2013, 41, 1232–1237. [Google Scholar] [CrossRef]
- Wu, T.; Li, T.; Liu, Z.; Guo, Y.; Dong, C. Electrochemical sensor for sensitive detection of triclosan based on graphene/palladium nanoparticles hybrids. Talanta 2017, 164, 556–562. [Google Scholar] [CrossRef]
- Saljooqi, A.; Shamspur, T.; Mostafavi, A. A sensitive electrochemical sensor Based on graphene oxide nanosheets decorated by Fe3O4@Au nanostructure stabilized on polypyrrole for efficient triclosan sensing. Electroanalysis 2020, 32, 1297–1303. [Google Scholar] [CrossRef]
- Tabanlıgil Calam, T.; Yılmaz, E.B. Electrochemical determination of 8-hydroxyquinoline in a cosmetic product on a glassy carbon electrode modified with 1-amino-2-naphthol-4-sulphonic acid. Instrum. Sci. Technol. 2021, 49, 1–20. [Google Scholar] [CrossRef]
- Penagos-Llanos, J.; Calderón, J.A.; Nagles, E.; Hurtado, J.J. Voltammetric determination of thiomersal with a new modified electrode based on a carbon paste electrode decorated with La2O3. J. Electroanal. Chem. 2019, 833, 536–542. [Google Scholar] [CrossRef]
- Akyıldırım, O. A sensitive voltammetric sensor based on silver nanoparticles/carbon nitride nanotubes@graphene quantum dots/a novel organic liquid: Determination of triclosan in wastewater. Bull. Mater. Sci. 2020, 43, 195. [Google Scholar] [CrossRef]
- Silva, E.M.; Takeuchi, R.M.; Santos, A.L. Carbon nanotubes for voltammetric determination of sulphite in some beverages. Food Chem. 2015, 173, 763–769. [Google Scholar] [CrossRef]
- Yildiz, G.; Oztekin, N.; Orbay, A.; Senkal, F. Voltammetric determination of nitrite in meat products using polyvinylimidazole modified carbon paste electrode. Food Chem. 2014, 152, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Stević, M.C.; Ignjatović, L.M.; Ćirić-Marjanović, G.; Stanišić, S.M.; Stanković, D.M.; Zima, J. Voltammetric behaviour and determination of 8-hydroxyquinoline using a glassy carbon paste electrode and the theoretical study of its electrochemical oxidation mechanism. Int. J. Electrochem. Sci. 2011, 6, 2509–2525. [Google Scholar]
- Beitollahi, H.; Tajik, S.; Biparva, P. Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: Application to determination of sulfite and phenol in real samples. Meas. J. Int. Meas. Confed. 2014, 56, 170–177. [Google Scholar] [CrossRef]
- Pushpanjali, P.A.; Manjunatha, J.G. A sensitive novel approach towards the detection of 8-hydroxyquinoline at anionic surfactant modified carbon nanotube based biosensor: A voltammetric study. Phys. Chem. Res. 2019, 7, 813–822. [Google Scholar] [CrossRef]
- Xu, G.; Chi, Y.; Li, L.; Liu, S.; Kan, X. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film. Food Chem. 2015, 177, 37–42. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, L.; Wen, J.; Ye, B. Sensitive determination of natamycin based on a new voltammetric sensor: A single-walled carbon nanotube composite poly(L-serine) film modified electrode. Anal. Methods 2015, 7, 2855–2861. [Google Scholar] [CrossRef]
- Luo, X.; Chen, L.; Yang, J.; Li, S.; Li, M.; Mo, Q.; Li, Y.; Li, X. Electrochemically simultaneous detection of ascorbic acid, sulfite and oxalic acid on Pt-Pd nanoparticles/chitosan/nitrogen doped graphene modified glassy carbon electrode: A method for drug quality control. Microchem. J. 2021, 169, 106623. [Google Scholar] [CrossRef]
- Yang, J. An Electrochemical Sensor for Determination of Sulfite (SO32-) in Water Based on Molybdenum Disulfide Flakes/Nafion Modified Electrode. Int. J. Electrochem. Sci. 2020, 15, 10304–10314. [Google Scholar] [CrossRef]
- Zhu, S.; Xie, A.; Duo, X.; Liu, Z.; Chang, J.; Yuan, B.; Chen, P.; Luo, S. Highly Sensitive and Selective Nonenzymatic Sulfite Sensor Based on LaFeO 3 /Graphene. J. Electrochem. Soc. 2020, 167, 047517. [Google Scholar] [CrossRef]
- Adeosun, W.A.; Asiri, A.M.; Marwani, H.M. Fabrication of Conductive Polypyrrole Doped Chitosan Thin Film for Sensitive Detection of Sulfite in Real Food and Biological Samples. Electroanalysis 2020, 32, 1725–1736. [Google Scholar] [CrossRef]
- Cui, M.; Huang, J.; Wang, Y.; Wu, Y.; Luo, X. Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene-carbon nanotube composites. Biosens. Bioelectron. 2015, 68, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Pandi, K.; Sivakumar, M.; Chen, S.-M.; Sakthivel, M.; Raghavi, G.; Chen, T.-W.; Liu, Y.-C.; Madhu, R. Electrochemical Synthesis of Lutetium (III) Hexacyanoferrate/poly(taurine) Modified Glassy Carbon Electrode for the Sensitive Detection of Sulfite in Tap Water. J. Electrochem. Soc. 2018, 165, B469–B474. [Google Scholar] [CrossRef]
- Dinçkaya, E.; Sezgintürk, M.K.; Akyilmaz, E.; Ertaş, F.N. Sulfite determination using sulfite oxidase biosensor based glassy carbon electrode coated with thin mercury film. Food Chem. 2007, 101, 1540–1544. [Google Scholar] [CrossRef]
- Mielech-Łukasiewicz, K.; Leoniuk, M. Voltammetric determination of natamycin using a cathodically pretreated boron-doped diamond electrode in the presence of sodium dodecyl sulfate. Microchem. J. 2020, 159, 105570. [Google Scholar] [CrossRef]
- Kashani, F.Z.; Ghoreishi, S.M.; Khoobi, A.; Enhessari, M. A carbon paste electrode modified with a nickel titanate nanoceramic for simultaneous voltammetric determination of ortho- and para-hydroxybenzoic acids. Microchim. Acta 2019, 186, 12. [Google Scholar] [CrossRef] [PubMed]
- Detpisuttitham, W.; Phanthong, C.; Ngamchana, S.; Rijiravanich, P.; Surareungchai, W. Electrochemical Detection of Salicylic Acid in Pickled Fruit/Vegetable and Juice. J. Anal. Test. 2020, 4, 291–297. [Google Scholar] [CrossRef]
- Chen, S.M.; Manavalan, S.; Rajaji, U.; Govindasamy, M.; Chen, T.W.; Ajmal Ali, M.; Alnakhli, A.K.; Al-Hemaid, F.M.A.; Elshikh, M.S. Determination of the antioxidant propyl gallate in meat by using a screen-printed electrode modified with CoSe2 nanoparticles and reduced graphene oxide. Microchim. Acta 2018, 185, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Eun, C. Electrochemical Behavior and Determination of Salicylic Acid at Carbon-fiber Electrodes. Electrochim. Acta 2016, 194, 346–356. [Google Scholar] [CrossRef]
- Wang, L.; Fang, F.-G.; Tu, W.-J. Determination of isothiazolinones in cosmetics using differential pulse voltammetry on an ultramicroelectrode. Int. J. Pharm. Ther. 2014, 5, 207–212. [Google Scholar]
- Adekunle, A.S.; Pillay, J.; Ozoemena, K.I. Probing the electrochemical behaviour of SWCNT-cobalt nanoparticles and their electrocatalytic activities towards the detection of nitrite at acidic and physiological pH conditions. Electrochim. Acta 2010, 55, 4319–4327. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalkiewicz, S.; Skorupa, A.; Jakubczyk, M. Carbon Materials in Electroanalysis of Preservatives: A Review. Materials 2021, 14, 7630. https://doi.org/10.3390/ma14247630
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. Materials. 2021; 14(24):7630. https://doi.org/10.3390/ma14247630
Chicago/Turabian StyleMichalkiewicz, Slawomir, Agata Skorupa, and Magdalena Jakubczyk. 2021. "Carbon Materials in Electroanalysis of Preservatives: A Review" Materials 14, no. 24: 7630. https://doi.org/10.3390/ma14247630
APA StyleMichalkiewicz, S., Skorupa, A., & Jakubczyk, M. (2021). Carbon Materials in Electroanalysis of Preservatives: A Review. Materials, 14(24), 7630. https://doi.org/10.3390/ma14247630