Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Wood Identification
2.2.2. Sample Preparation and Density Measurements
2.2.3. Compression Tests
2.2.4. Infrared Spectroscopy
2.2.5. X-ray Diffraction
3. Results and Discussion
3.1. Wood Identification
3.2. Wood Density and Mechanical Properties
3.3. Wood Chemical Composition
3.4. Cellulose Crystallinity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crouch, D.P. The Hellenistic Water System of Morgantina, Sicily: Contributions to the History of Urbanization. AJA 1984, 88, 353–365. [Google Scholar] [CrossRef]
- Walski, T.M. A History of Water Distribution. J. Am. Water Work. Assoc. 2006, 98, 110–121. [Google Scholar] [CrossRef]
- Tomory, L. London’s Water Supply before 1800 and the Roots of the Networked City. Technol. Cult. 2015, 56, 704–737. [Google Scholar] [CrossRef] [PubMed]
- Cox, E.W. Wooden Water-Pipes. Antiquary 1888, 18, 183. [Google Scholar]
- Pipes—Wood|The History of Sanitary Sewers. Available online: http://www.sewerhistory.org/photosgraphics/pipes-wood/ (accessed on 25 October 2021).
- Aoki, H. A Study of the Technique for Applying Wooden Pipes to Water Supply from the View-Point of the Tatsumi Waterworks. Hist. Stud. Civ. Eng. 1999, 19, 83–88. [Google Scholar] [CrossRef]
- Fulcher, J. Wooden Water Pipe Reveals History of Town’s Infrastructure. WEF Highlights 2009, 46, 1. [Google Scholar]
- Found in Philadelphia: 200-Year-Old Wooden Water Mains. Available online: https://news.wef.org/found-in-philadelphia-200-year-old-wooden-water-mains/ (accessed on 17 July 2021).
- Melosi, M.V. Pure and Plentiful: The Development of Modern Waterworks in the United States, 1801–2000. Water Policy 2000, 2, 243–265. [Google Scholar] [CrossRef]
- Koeppel, G. Historic Wooden Water Pipes Unearthed. Available online: https://aqueduct.org/article/historic-wooden-water-pipes-unearthed (accessed on 17 July 2021).
- Power, P. An Ancient Wooden Water-Pipe. JRSAI 1918, 8, 78–79. [Google Scholar]
- Katko, T. Development of Rural Water Supply in Finland: Possible Lessons for the Developing World?—Discussion Paper; Tampereen Teknillinen Korkeakoulu: Tampere, Finland, 1989. [Google Scholar]
- Wieloch, G. Manufacture of Wood Tubes Used in Water Supplies. Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2018, 104, 473–480. [Google Scholar]
- Wiater, Z. Wiejskie Wodociągi i Kanalizacja Lubelszczyzny. Available online: bc.pollub.pl/Content/13065/PDF/kanalizacja.pdf (accessed on 17 July 2021).
- Blanchette, R.A.; Nilsson, T.; Daniel, G.; Abad, A. Biological Degradation of Wood. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 141–174. ISBN 978-0-8412-1623-5. [Google Scholar]
- Blanchette, R.A. A Review of Microbial Deterioration Found in Archaeological Wood from Different Environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Pournou, A. Wood Deterioration by Terrestrial Microorganisms. In Biodeterioration of Wooden Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2020; pp. 345–424. ISBN 978-3-030-46504-9. [Google Scholar]
- Nilsson, T.; Rowell, R. Historical Wood–Structure and Properties. J. Cult. Herit. 2012, 13, S5–S9. [Google Scholar] [CrossRef]
- Green, D.W.; Winandy, J.E.; Kretschmann, D.E. Mechanical Properties of Wood, Forest Products Laboratory. In Wood Handbook—Wood as an Engineering Material; General Technical Report FPL–GTR–113; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999. [Google Scholar]
- Kollmann, F.F.; Côté, W.A., Jr. Principles of Wood Science and Technology. Vol. I. Solid Wood; Springer: Berlin/Heidelberg, Germany, 1968. [Google Scholar]
- Bao, F.C.; Jiang, Z.H.; Jiang, X.M.; Lu, X.X.; Luo, X.Q.; Zhang, S.Y. Differences in Wood Properties between Juvenile Wood and Mature Wood in 10 Species Grown in China. Wood Sci. Technol. 2001, 35, 363–375. [Google Scholar] [CrossRef]
- Lichtenegger, H.; Reiterer, A.; Stanzl-Tschegg, S.E.; Fratzl, P. Variation of Cellulose Microfibril Angles in Softwoods and Hardwoods—A Possible Strategy of Mechanical Optimization. J. Struct. Biol. 1999, 128, 257–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng-Zuo, F.; Wen-Zhong, Y.; Xiang-Xiang, F.U. Variation of Microfibril Angle and Its Correlation to Wood Properties in Poplars. J. For. Res. 2004, 15, 261–267. [Google Scholar] [CrossRef]
- Eder, M.; Arnould, O.; Dunlop, J.W.; Hornatowska, J.; Salmén, L. Experimental Micromechanical Characterisation of Wood Cell Walls. Wood Sci. Technol. 2013, 47, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Roszyk, E.; Stachowska, E.; Majka, J.; Mania, P.; Broda, M. Moisture-Dependent Strength Properties of Thermally-Modified Fraxinus Excelsior Wood in Compression. Materials 2020, 13, 1647. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Donaldson, L.; Walker, J.; Evans, R.; Downes, G. Effects of Density and Microfibril Orientation on the Vertical Variation of Low-Stiffness Wood in Radiata Pine Butt Logs. Holzforschung 2004, 58, 673–677. [Google Scholar] [CrossRef]
- Moon, R.J.; Jakes, J.E.; Beecher, J.F.; Frihart, C.R.; Stone, D.S. Relating Nanoindentation to Macroindentation of Wood. In Advanced Biomass Science and Technology for Bio-Based Products; Chinese Academy of Forestry: Beijing, China, 2009; pp. 145–157. [Google Scholar]
- Nowak, T.; Patalas, F.; Karolak, A. Estimating Mechanical Properties of Wood in Existing Structures—Selected Aspects. Materials 2021, 14, 1941. [Google Scholar] [CrossRef]
- Hu, W.; Wan, H.; Guan, H. Size Effect on the Elastic Mechanical Properties of Beech and Its Application in Finite Element Analysis of Wood Structures. Forests 2019, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- Bader, T.K.; de Borst, K.; Fackler, K.; Ters, T.; Braovac, S. A Nano to Macroscale Study on Structure-Mechanics Relationships of Archaeological Oak. J. Cult. Herit. 2013, 14, 377–388. [Google Scholar] [CrossRef]
- Hamdan, S.; Dwianto, W.; Morooka, T.; Norimoto, M. Softening Characteristics of Wet Wood under Quasi Static Loading. Holzforschung 2000, 54, 557–560. [Google Scholar] [CrossRef]
- Hofstetter, K.; Gamstedt, E.K. Hierarchical Modelling of Microstructural Effects on Mechanical Properties of Wood. A Review COST Action E35 2004–2008: Wood Machining–Micromechanics and Fracture. Holzforschung 2009, 63, 130–138. [Google Scholar] [CrossRef]
- Lenth, C.A.; Kamke, F.A. Moisture Dependent Softening Behavior of Wood. Wood Fiber Sci. 2007, 33, 492–507. [Google Scholar]
- Ansell, M.P. Wood Microstructure–A Cellular Composite. In Wood Composites; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–26. [Google Scholar]
- Salmén, L. Wood Cell Wall Structure and Organisation in Relation to Mechanics. In Plant Biomechanics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–19. [Google Scholar]
- Hayashi, T.; Kaida, R. Functions of Xyloglucan in Plant Cells. Mol. Plant 2011, 4, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Bergander, A.; Salmén, L. Cell Wall Properties and Their Effects on the Mechanical Properties of Fibers. J. Mater. Sci. 2002, 37, 151–156. [Google Scholar] [CrossRef]
- Bjurhager, I.; Halonen, H.; Lindfors, E.-L.; Iversen, T.; Almkvist, G.; Gamstedt, E.K.; Berglund, L.A. State of Degradation in Archeological Oak from the 17th Century Vasa Ship: Substantial Strength Loss Correlates with Reduction in (Holo) Cellulose Molecular Weight. Biomacromolecules 2012, 13, 2521–2527. [Google Scholar] [CrossRef]
- Spear, M.J.; Broda, M. Comparison of Contemporary Elm (Ulmus Spp.) and Degraded Archaeological Elm: The Use of Dynamic Mechanical Analysis Under Ambient Moisture Conditions. Materials 2020, 13, 5026. [Google Scholar] [CrossRef] [PubMed]
- Schniewind, A.P. Physical and Mechanical Properties of Archaeological Wood. In Archaeological Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, pp. 87–109. ISBN 978-0-8412-1623-5. [Google Scholar]
- Han, L.; Tian, X.; Keplinger, T.; Zhou, H.; Li, R.; Svedström, K.; Burgert, I.; Yin, Y.; Guo, J. Even Visually Intact Cell Walls in Waterlogged Archaeological Wood Are Chemically Deteriorated and Mechanically Fragile: A Case of a 170 Year-Old Shipwreck. Molecules 2020, 25, 1113. [Google Scholar] [CrossRef] [Green Version]
- Witomski, A.; Krajewski, P.; Kozakiewicz, P. Shear Strength of Scots Pine (Pinus Sylvestris L.) from the Historical Buildings. Wood Res. 2016, 61, 845–850. [Google Scholar]
- Obataya, E. Characteristics of Aged Wood and Japanese Traditional Coating Technology for Wood Protection. Acte De La Journée D’étude Conserver Aujourdhui: Les"Vieil." Du Bois Cité De La Musique 2007, 3, 26–44. [Google Scholar]
- Yokoyama, M.; Gril, J.; Matsuo, M.; Yano, H.; Sugiyama, J.; Clair, B.; Kubodera, S.; Mistutani, T.; Sakamoto, M.; Ozaki, H. Mechanical Characteristics of Aged Hinoki Wood from Japanese Historical Buildings. Comptes Rendus Phys. 2009, 10, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Thaler, N.; Humar, M. Performance of Oak, Beech and Spruce Beams after More than 100 Years in Service. Int. Biodeter. Biodegr. 2013, 85, 305–310. [Google Scholar] [CrossRef]
- ISO 13061-2. Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests; International Organization for Standardisation: Geneva, Switzerland, 2014. [Google Scholar]
- Mederski, P.S.; Bembenek, M.; Karaszewski, Z.; Giefing, D.F.; Sulima-Olejniczak, E.; Rosinska, M.; Lacka, A. Density and Mechanical Properties of Scots Pine (Pinus Sylvestris L.) Wood from a Seedling Seed Orchard. Drewno. Pr. Naukowe. Doniesienia. Komun. 2015, 58, 117–124. [Google Scholar]
- Wąsik, R.; Michalec, K.; Barszcz, A.; Mudryk, K. Variability of Selected Macrostructure Features, Density and Compression Strength along the Grain of “Tabórz” Scots Pine Wood (Pinus Sylvestris L.). Drew. Pr. Nauk. Doniesienia Komun. 2020, 62, 171–182. [Google Scholar]
- Pérez-Peña, N.; Elustondo, D.; Valenzuela, L.; Ananías, R. Variation of Perpendicular Compressive Strength Properties Related to Anatomical Structure and Density in Eucalyptus Nitens Green Specimens. BioResources 2020, 15, 987–1000. [Google Scholar] [CrossRef]
- Kloiber, M.; Drdácký, M.; Tippner, J.; Hrivnák, J. Conventional Compressive Strength Parallel to the Grain and Mechanical Resistance of Wood against Pin Penetration and Microdrilling Established by In-Situ Semidestructive Devices. Mater. Struct. 2015, 48, 3217–3229. [Google Scholar] [CrossRef]
- Hermans, P.H.; Weidinger, A. Quantitative X-ray Investigations on the Crystallinity of Cellulose Fibers. A Background Analysis. J. Appl. Phys. 1948, 19, 491–506. [Google Scholar] [CrossRef]
- Schoch, W.; Heller, I.; Schweingruber, F.H.; Kienast, F. Wood Anatomy of Central European. Available online: http://www.woodanatomy.ch (accessed on 11 October 2021).
- Yaman, B. Comparative Wood Anatomy of Pinus Sylvestris and Its Var. Compacta in the West Black Sea Region of Turkey. IAWA J. 2007, 28, 75–82. [Google Scholar] [CrossRef]
- Han, L.; Guo, J.; Wang, K.; Grönquist, P.; Li, R.; Tian, X.; Yin, Y. Hygroscopicity of Waterlogged Archaeological Wood from Xiaobaijiao No.1 Shipwreck Related to Its Deterioration State. Polymers 2020, 12, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghavidel, A.; Bak, M.; Hofmann, T.; Vasilache, V.; Sandu, I. Evaluation of Some Wood-Water Relations and Chemometric Characteristics of Recent Oak and Archaeological Oak Wood (Quercus Robur) with Archaeometric Value. J. Cult. Herit. 2021, 51, 21–28. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Spear, M.J.; Hill, C.A. Effect of Methyltrimethoxysilane Impregnation on the Cell Wall Porosity and Water Vapour Sorption of Archaeological Waterlogged Oak. Wood Sci. Technol. 2019, 53, 703–726. [Google Scholar] [CrossRef] [Green Version]
- Tsuchikawa, S.; Yonenobu, H.; Siesler, H.W. Near-Infrared Spectroscopic Observation of the Ageing Process in Archaeological Wood Using a Deuterium Exchange Method. Analyst 2005, 130, 379. [Google Scholar] [CrossRef] [PubMed]
- Roszyk, E.; Mania, P.; Iwańska, E.; Kusiak, W.; Broda, M. Mechanical Performance of Scots Pine Wood from Northwestern Poland–A Case Study. BioResources 2020, 15, 6781–6794. [Google Scholar] [CrossRef]
- Missanjo, E.; Matsumura, J. Wood Density and Mechanical Properties of Pinus Kesiya Royle Ex Gordon in Malawi. Forests 2016, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Ross, R.J. Wood Handbook: Wood as an Engineering Material. In USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190; Forest Products Laboratory: Madison, WI, USA, 2010; Volume 1, 509p. [Google Scholar]
- Krzysik, F. Nauka o Drewnie; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Bayani, S.; Taghiyari, H.R.; Papadopoulos, A.N. Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose. Polymers 2019, 11, 1538. [Google Scholar] [CrossRef] [Green Version]
- Navi, P.; Stanzl-Tschegg, S. Micromechanics of Creep and Relaxation of Wood. A Review COST Action E35 2004–2008: Wood Machining–Micromechanics and Fracture. Holzforshung 2009, 63, 186–195. [Google Scholar] [CrossRef]
- Åkerholm, M.; Salmén, L. Interactions between Wood Polymers Studied by Dynamic FT-IR Spectroscopy. Polymer 2001, 42, 963–969. [Google Scholar] [CrossRef]
- Stevanic, J.S.; Salmén, L. Molecular Origin of Mechano-Sorptive Creep in Cellulosic Fibres. Carbohydr. Polym. 2020, 230, 115615. [Google Scholar] [CrossRef]
- Kondo, T. Hydrogen Bonds in Cellulose and Cellulose Derivatives. Polysacch. Struct. Divers. Funct. Versatility 2005, 69–98. [Google Scholar]
- Popescu, C.-M.; Popescu, M.-C.; Singurel, G.; Vasile, C.; Argyropoulos, D.S.; Willfor, S. Spectral Characterization of Eucalyptus Wood. Appl. Spectrosc. 2007, 61, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Popescu, C.; Vasile, C.; Popescu, M.; Singurel, G.; Popa, V.I.; Munteanu, B.S. Analytical Methods for Lignin Characterization. II. Spectroscopic Studies. Cellul. Chem. Technol. 2006, 40, 597. [Google Scholar]
- Popescu, M.-C.; Popescu, C.-M.; Lisa, G.; Sakata, Y. Evaluation of Morphological and Chemical Aspects of Different Wood Species by Spectroscopy and Thermal Methods. J. Mol. Struct. 2011, 988, 65–72. [Google Scholar] [CrossRef]
- Broda, M.; Popescu, C.-M. Natural Decay of Archaeological Oak Wood versus Artificial Degradation Processes—an FT-IR Spectroscopy and X-Ray Diffraction Study. Spectrochim Acta A-M 2019, 209, 280–287. [Google Scholar] [CrossRef]
- Nguyen, H.; Lagarde, F.; Louarn, G.; Daniel, P. A New Way to Discriminate Polluted Wood by Vibrational Spectroscopies. Talanta 2017, 167, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Capretti, C.; Macchioni, N.; Pizzo, B.; Galotta, G.; Giachi, G.; Giampaola, D. The Characterization of Waterlogged Archaeological Wood: The Three Roman Ships Found in Naples (Italy). Archaeometry 2008, 50, 855–876. [Google Scholar] [CrossRef]
- Pizzo, B.; Giachi, G.; Fiorentino, L. Reasoned Use of Chemical Parameters for the Diagnostic Evaluation of the State of Preservation of Waterlogged Archaeological Wood. J. Archaeol. Sci. 2013, 40, 1673–1680. [Google Scholar] [CrossRef]
- Broda, M.; Hill, C.A. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Rongpipi, S.; Ye, D.; Gomez, E.D.; Gomez, E.W. Progress and Opportunities in the Characterization of Cellulose—An Important Regulator of Cell Wall Growth and Mechanics. Front. Plant Sci. 2019, 9, 1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popescu, C.-M.; Larsson, P.T.; Tibirna, C.M.; Vasile, C. Characterization of Fungal-Degraded Lime Wood by X-Ray Diffraction and Cross-Polarization Magic-Angle-Spinning 13C-Nuclear Magnetic Resonance Spectroscopy. Appl. Spectrosc. 2010, 64, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, U.P.; Ralph, S.A.; Baez, C.; Reiner, R.S.; Verrill, S.P. Effect of Sample Moisture Content on XRD-Estimated Cellulose Crystallinity Index and Crystallite Size. Cellulose 2017, 24, 1971–1984. [Google Scholar] [CrossRef]
Wood Type | Density (kg × m−3) | MC (%) | MOET (MPa) | sMOET × 106 (N × m × kg−1) | MOER (MPa) | sMOER × 106 (N×m×kg−1) | MOEL (MPa) | sMOEL × 106 (N × m × kg−1) |
---|---|---|---|---|---|---|---|---|
Archaeological | 383 ± 36 | 9.4 ± 0.2 | 159 ± 62 | 0.4 ± 0.1 | 189 ± 67 | 0.5 ± 0.2 | 4407 ± 1381 | 10.8 ± 2.6 |
Contemporary | 572 ± 13 | 9.0 ± 0.2 | 662 ± 115 | 1.2 ± 0.2 | 909 ± 296 | 1.5 ± 0.5 | 10,775 ± 1572 | 18.7 ± 2.6 |
Wood Type | RcT (MPa) | sRcT × 103 (N × m × kg−1) | RcR (MPa) | sRcR ×103 (N × m × kg−1) | RcL (MPa) | sRcL × 103 (N × m × kg−1) |
---|---|---|---|---|---|---|
Archaeological | 1.1 ± 0.6 | 2.9 ± 1.2 | 1.1 ± 0.3 | 3.0 ± 0.8 | 29.5 ± 5.6 | 72.6 ± 9.1 |
Contemporary | 3.8 ± 0.4 | 6.7 ± 0.6 | 3.6 ± 0.4 | 6.2 ± 0.8 | 64.1 ± 3.9 | 111.3 ± 5.6 |
Bands Assignments | Bands Position | |
---|---|---|
Contemporary Pine | Archaeological Pine | |
absorbed water weakly bound and intramolecular hydrogen bond in a phenolic group (in lignin) | 3561 | 3564 |
O2–H2⋯O6 intramolecular stretching modes (in cellulose) | 3417 | 3416 |
O5–H5⋯O3 intramolecular in cellulose | 3349 | 3348 |
O6–H6⋯O3 intermolecular in cellulose Iβ (3270) | 3288 | 3288 |
O6–H6⋯O3 intermolecular in cellulose Iα (3240) | 3221 | 3216 |
C–H stretching absorption in methyl and methylene groups in cellulose I | 3135 | 3135 |
multiple formations of an intermolecular hydrogen bond between biphenol and other phenolic groups (in lignin) | 3070 | 3067 |
multiple formations of an intermolecular hydrogen bond between biphenol and other phenolic groups (in lignin) | 3012 | 3011 |
asymmetric C–H stretching | 2931 | 2932 |
symmetric C–H stretching | 2878 | 2878 |
C=O stretching vibration of carboxyl and acetyl groups | 1740 | 1741 |
conjugated C–O in quinones | 1660 | 1660 |
absorbed O–H | 1638 | 1640 |
C=C of aromatic skeletal (lignin) | 1594 | 1596 |
conjugated C–O | 1551 | 1551 |
C=C of aromatic skeletal (lignin) | 1512 | 1512 |
C–H deformation in lignin and carbohydrates | 1462 | 1461 |
C–H deformation in lignin and carbohydrates | 1423 | 1421 |
C–H deformation in cellulose and hemicellulose | 1375 | 1374 |
C–H vibration in cellulose and Cl–O vibration in syringyl derivatives | 1322 | 1325 |
C–H bending mode in cellulose and C–O stretch in lignin | 1268 | 1268 |
C–O–C stretching mode of the pyranose ring | 1228 | 1221 |
C–O–C vibration in cellulose and hemicellulose | 1161 | 1161 |
C–O stretching | 1115 | 1117 |
C–O stretching mainly from C(3)–O(3)H in cellulose I | 1065 | 1065 |
C–O and C–C stretching ring in cellulose and hemicelluloses | 1024 | 1024 |
C–O stretching | 991 | 991 |
Aromatic C–H out of plane deformations, pyran ring stretching | 952 | 952/936 |
C–H deformation in cellulose | 896 | 896 |
CH out of plane vibrations in positions 2, 5 and 6 of guaiacyl units | 866 | 866 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broda, M.; Popescu, C.-M.; Timpu, D.I.; Rowiński, D.; Roszyk, E. Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland. Materials 2021, 14, 7632. https://doi.org/10.3390/ma14247632
Broda M, Popescu C-M, Timpu DI, Rowiński D, Roszyk E. Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland. Materials. 2021; 14(24):7632. https://doi.org/10.3390/ma14247632
Chicago/Turabian StyleBroda, Magdalena, Carmen-Mihaela Popescu, Daniel Ilie Timpu, Dawid Rowiński, and Edward Roszyk. 2021. "Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland" Materials 14, no. 24: 7632. https://doi.org/10.3390/ma14247632
APA StyleBroda, M., Popescu, C. -M., Timpu, D. I., Rowiński, D., & Roszyk, E. (2021). Factors That Affect the Mechanical Strength of Archaeological Wood—A Case Study of 18th-Century Wooden Water Pipes from Bóżnicza Street in Poznań, Poland. Materials, 14(24), 7632. https://doi.org/10.3390/ma14247632