Nanoparticle Generation in Glowing Wire Generator: Insight into Nucleation Peculiarities
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Sharma, G.; Koh, C.; Kumar, V.; Chakrabarty, R.; Biswas, P. Influence of flame-generated ions on the simultaneous charging and coagulation of nanoparticles during combustion. Aerosol Sci. Technol. 2017, 51, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y. Diameter control of gold nanoparticles synthesised in gas phase using atmospheric-pressure H2/Ar plasma jet and gold wire as the nanoparticle source: Control by varying the H2/Ar mixture ratio. AIP Adv. 2017, 7, 015316. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, T.V.; Feng, J.; Schmidt-Ott, A. New developments in spark production of nanoparticles. Adv. Powder Technol. 2014, 25, 56–70. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z. Condensation-type quasi monodisperse aerosol generator with WOx nanoparticles as nuclei produced by glowing wire method. Powder Technol. 2017, 313, 344–352. [Google Scholar] [CrossRef]
- Dzimitrowicz, A.; Greda, K.; Lesniewicz, T.; Jamroz, P.; Nyk, M.; Pohl, P. Size-controlled synthesis of gold nanoparticles by a novel atmospheric pressure glow discharge system with a metallic pin electrode and a flowing liquid electrode. RSC. Adv. 2016, 6, 80773–80783. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Ott, A.; Schurtenberger, P.; Siegmann, H.C. Enormous yield of photoelectrons from small particles. Phys. Rev. Lett. 1980, 45, 1284–1287. [Google Scholar] [CrossRef]
- Peineke, C.; Attoui, M.; Robles, R.; Reber, A.; Khanna, S.; Schmidt-Ott, A. Production of equal sized atomic clusters by a hot wire. J. Aerosol Sci. 2009, 40, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Dames, P.; Gleich, B.; Flemmer, A.; Hajek, K.; Seidl, N.; Wiekhorst, F.; Eberbeck, D.; Bittmann, I.; Bergemann, C.; Weyh, T.; et al. Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2007, 2, 495–499. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kiarostami, K.; Khatir, N.M.; Rezania, S.; Muhamad, I.I. Green synthesis of Mg0. 99 Zn0. 01O nanoparticles for the fabrication of κ-Carrageenan/NaCMC hydrogel in order to deliver catechin. Polymers 2020, 12, 861. [Google Scholar] [CrossRef] [Green Version]
- Ohtaka, A. Recent progress of metal nanoparticle catalysts for C-C bond forming reactions. Catalysts 2021, 11, 1266. [Google Scholar] [CrossRef]
- Zuo, Y.; Carter-Searjeant, S.; Green, M.; Mills, L.; Mannan, S.H. Low temperature Cu joining by in situ reduction-sintering of CuO nanoparticle for high power electronics. Adv. Powder Technol. 2020, 31, 4135–4144. [Google Scholar] [CrossRef]
- Al Shboul, A.M.; Izquierdo, R. Printed chemiresistive In2O3 nanoparticle-based sensors with ppb Detection of H2S gas for Food packaging. ACS Appl. Nano Mater. 2021, 4, 9508–9517. [Google Scholar] [CrossRef]
- Ramulu, B.; Sekhar, S.C.; Arbaz, S.J.; Nagaraju, M.; Yu, J.S. Nickel-cobalt phosphate nanoparticle-layer shielded in-situ grown copper-nickel molybdate nanosheets for electrochemical energy storage. Energy Storage Mater. 2022, 44, 379–389. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Kostopoulou, A.; LaGrow, A.P. Magnetic nanoparticle composites: Synergistic effects and applications. Adv. Sci. 2021, 8, 2004951. [Google Scholar] [CrossRef]
- Khan, A.; Modak, P.; Joshi, M.; Khandare, P.; Koli, A.; Gupta, A.; Anand, S.; Sapra, B.K. Generation of high-concentration nanoparticles using glowing wire technique. J. Nanoparticle Res. 2014, 16, 2776. [Google Scholar] [CrossRef]
- Ghosh, K.; Tripathi, S.N.; Joshi, M.; Mayya, Y.S.; Khan, A.; Sapra, B.K. Particle formation from vapors emitted from glowing wires: Theory and experiments. Aerosol Sci. Technol. 2020, 54, 243–261. [Google Scholar] [CrossRef]
- Altman, I.; Agranovski, I.; Choi, M. On nanoparticle surface growth: MgO nanoparticle formation during a Mg particle combustion. Appl. Phys. Lett. 2004, 84, 5130–5132. [Google Scholar] [CrossRef]
- Altman, I.; Agranovski, I.; Choi, M. Nanoparticle generation: The concept of a stagnation size region for condensation growth. Phys. Rev. E 2004, 70, 062603. [Google Scholar] [CrossRef]
- Fomenko, E.; Altman, I.; Agranovski, I.E. On anomalous nanoparticle size evolution in glowing wire generator. Nano Struct. Nano Objects 2021, 26, 100693. [Google Scholar] [CrossRef]
- Boskovic, L.; Agranovski, I.E. An influence of a gas velocity on morphology of molybdenum oxide nanoparticles generated by a glowing wire generator. J. Aerosol Sci. 2013, 63, 69–74. [Google Scholar] [CrossRef]
- De Iuliis, S.; Dondè, R.; Altman, I. Advancement in comprehending the evolution of nanooxides in flames using laser irradiation. Chem. Phys. Lett. 2021, 139213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomenko, E.; Altman, I.; Boskovic, L.; Agranovski, I.E. Nanoparticle Generation in Glowing Wire Generator: Insight into Nucleation Peculiarities. Materials 2021, 14, 7775. https://doi.org/10.3390/ma14247775
Fomenko E, Altman I, Boskovic L, Agranovski IE. Nanoparticle Generation in Glowing Wire Generator: Insight into Nucleation Peculiarities. Materials. 2021; 14(24):7775. https://doi.org/10.3390/ma14247775
Chicago/Turabian StyleFomenko, Elena, Igor Altman, Lucija Boskovic, and Igor E. Agranovski. 2021. "Nanoparticle Generation in Glowing Wire Generator: Insight into Nucleation Peculiarities" Materials 14, no. 24: 7775. https://doi.org/10.3390/ma14247775
APA StyleFomenko, E., Altman, I., Boskovic, L., & Agranovski, I. E. (2021). Nanoparticle Generation in Glowing Wire Generator: Insight into Nucleation Peculiarities. Materials, 14(24), 7775. https://doi.org/10.3390/ma14247775