Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications
Abstract
:1. Introduction
2. Experimental
2.1. Material and Methods
2.1.1. Threads and Substrate
2.1.2. Tested Samples Preparation
2.2. Design and Fabrication of Sensors
2.3. Impedance/Admittance Measurements
3. Results and Discussion
3.1. Morphological Analysis of Threads and Cotton Substrate
3.2. Moisture Detection by Impedance/Admittance Measurement
3.3. Characterization of Conductive Threads
3.4. Moisture Sensor Modelling
3.5. Sensitivity Analysis of Moisture Sensor
3.6. Adsorption–Desorption Study of Sensors
3.7. Performance Repeatability of Identically Fabricated Sensors
3.8. Washing Test
3.9. Applications of Sensor
3.10. Moisture Sensors: Past and Present
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhanen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Lim, S.; Ko, H. Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 2018, 6, 4043–4064. [Google Scholar] [CrossRef]
- Yu, Y.; Peng, S.; Blanloeuil, P.; Wu, S.; Wang, C.H. Wearable Temperature Sensors with Enhanced Sensitivity by Engineering Microcrack Morphology in PEDOT: PSS–PDMS Sensors. ACS Appl. Mater. Interfaces 2020, 12, 36578–36588. [Google Scholar] [CrossRef]
- Rhudy, M.B.; Greenauer, N.; Mello, C. Wearable light data logger for studying physiological and psychological effects of light data. HardwareX 2020, 8, e00157. [Google Scholar] [CrossRef]
- Kweon, O.Y.; Samanta, S.K.; Won, Y.; Yoo, J.H.; Oh, J.H. Stretchable and self-healable conductive hydrogels for wearable multimodal touch sensors with thermoresponsive behavior. ACS Appl. Mater. Interfaces 2019, 11, 26134–26143. [Google Scholar] [CrossRef]
- Singh, E.; Meyyappan, M.; Nalwa, H.S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wang, Y.; Zhang, R.; Li, J.; Li, X.; Zang, Z. Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sens. Actuators B Chem. 2021, 349, 130770. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Zhang, Z.; Sun, P.; Chen, H. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir 2020, 36, 9443–9448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Y.; Xie, G.; Li, J.; Wang, Y.; Liu, X.; Zang, Z. Dual Resistance and Impedance Investigation: Ultrasensitive and Stable Humidity Detection of Molybdenum Disulfide Nanosheet-Polyethylene Oxide Hybrids. ACS Appl. Mater. Interfaces 2021, 13, 25250–25259. [Google Scholar] [CrossRef]
- Xu, S.; Jayaraman, A.; Rogers, J.A. Skin Sensors Are the Future of Health Care. Nature 2019, 571, 319–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Yu, Z.; Mao, G.; Li, Y.; Pravarthana, D.; Asghar, W.; Liu, Y.; Qu, S.; Shang, J.; Li, R.W. A Wearable Capacitive Sensor Based on Ring/Disk-Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. Glob. Chall. 2020, 4, 1900079. [Google Scholar] [CrossRef]
- Jose, M.; Oudebrouckx, G.; Bormans, S.; Veske, P.; Thoelen, R.; Deferme, W. Monitoring Body Fluids in Textiles: Combining Impedance and Thermal Principles in a Printed, Wearable, and Washable Sensor. ACS Sens. 2021, 6, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, J.S.; Eom, J.; Kim, Y.; Park, S.K. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.; Ryoo, H.-Y.; Shin, B.-S. Sustainable wearables: Wearable technology for enhancing the quality of human life. Sustainability 2016, 8, 466. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790. [Google Scholar] [CrossRef] [PubMed]
- Pegan, J.D.; Zhang, J.; Chu, M.; Nguyen, T.; Park, S.J.; Paul, A.; Kim, J. Skin-mountable stretch sensor for wearable health monitoring. Nanoscale 2016, 8, 17295–17303. [Google Scholar] [CrossRef]
- Milne, S.D.; Seoudi, I.; Al Hamad, H.; Talal, T.K.; Anoop, A.A.; Allahverdi, N.; Zakaria, Z.; Menzies, R.; Connolly, P. A wearable wound moisture sensor as an indicator for wound dressing change: An observational study of wound moisture and status. Int. Wound J. 2016, 13, 1309–1314. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, H.; Catarino, A.P.; Rocha, A.; Postolache, O. Health monitoring using textile sensors and electrodes: An overview and integration of technologies. In Proceedings of the 2014 IEEE international symposium on medical measurements and applications (MeMeA), Lisboa, Portugal, 11–12 June 2014; pp. 1–6. [Google Scholar]
- Tricoli, A.; Nasiri, N.; De, S. Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 2017, 27, 1605271. [Google Scholar] [CrossRef]
- Brennan, D.; Galvin, P. Flexible substrate sensors for multiplex biomarker monitoring. MRS Commun. 2018, 8, 627–641. [Google Scholar] [CrossRef] [Green Version]
- Bonefačić, D.; Bartolić, J. Embroidered Textile Antennas: Influence of Moisture in Communication and Sensor Applications. Sensors 2021, 21, 3988. [Google Scholar] [CrossRef]
- Wawrzynek, E.; Baumbauer, C.; Arias, A.C. Characterization and Comparison of Biodegradable Printed Capacitive Humidity Sensors. Sensors 2021, 21, 6557. [Google Scholar] [CrossRef]
- Hassan, G.; Sajid, M.; Choi, C. Highly sensitive and full range detectable humidity sensor using PEDOT: PSS, methyl red and graphene oxide materials. Sci. Rep. 2019, 9, 1–10. [Google Scholar]
- Zhou, G.; Byun, J.H.; Oh, Y.; Jung, B.M.; Cha, H.J.; Seong, D.G.; Um, M.K.; Hyun, S.; Chou, T.W. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly (vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 2017, 9, 4788–4797. [Google Scholar] [CrossRef] [PubMed]
- Wernecke, R.; Wernecke, J. Moisture and humidity measurement methods in solid, liquid, and gaseous substances. In Industrial Moisture Humidity Measurement, 1st ed.; Wernecke, R., Wernecke, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 57–160. [Google Scholar]
- Bobeth, W.; Berger, W.; Faulstich, H.; Fischer, P.; Heger, A.; Jacobasch, H.J.; Mally, A.; Mikut, I. Verhalten bei Feuchte-bzw. Wassereinwirkung. In Textile Faserstoffe; Springer: Berlin, Germany, 1993; pp. 231–252. [Google Scholar]
- Tessarolo, M.; Gualandi, I.; Fraboni, B. Recent progress in wearable fully textile chemical sensors. Adv. Mater. Technol. 2018, 3, 1700310. [Google Scholar] [CrossRef]
- Qi, K.; He, J.; Wang, H.; Zhou, Y.; You, X.; Nan, N.; Shao, W.; Wang, L.; Ding, B.; Cui, S. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42951–42960. [Google Scholar] [CrossRef] [PubMed]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 53001. [Google Scholar] [CrossRef]
- Seesaard, T.; Lorwongtragool, P.; Kerdcharoen, T. Development of fabric-based chemical gas sensors for use as wearable electronic noses. Sensors 2015, 15, 1885–1902. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Estrada, M.; Fernández-García, R.; Gil, I. Experimental analysis of fabric substrate on a moisture sensor. J. Text. Inst. 2021, 112, 881–886. [Google Scholar] [CrossRef]
- Gaubert, V.; Gidik, H.; Koncar, V. Boxer Underwear Incorporating Textile Moisture Sensor to Prevent Nocturnal Enuresis. Sensors 2020, 20, 3546. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Estrada, M.; Moradi, B.; Fernández-Garcia, R.; Gil, I. Embroidery textile moisture sensor. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 1057. [Google Scholar] [CrossRef] [Green Version]
- Baltiņa, I.; Blūms, J.; Tiļļa, L. Termoregulatīvs apakšģērbs bērniema. Mater. Sci. 2012, 7, 1691–3132. [Google Scholar]
- Martínez-Estrada, M.; Moradi, B.; Fernández-Garcia, R.; Gil, I. Impact of conductive yarns on an embroidery textile moisture sensor. Sensors 2019, 19, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.R.; Kim, J.; Park, C.H. Facile fabrication of multifunctional fabrics: Use of copper and silver nanoparticles for antibacterial, superhydrophobic, conductive fabrics. RSC Adv. 2018, 8, 41782–41794. [Google Scholar] [CrossRef] [Green Version]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- HC 12 1000 m CONE (High Conductive Thread)—MADEIRA UK|Online-Shop|. Available online: https://shop.madeira.co.uk/hc-12-1000m-cone-(high-conductive)_hc12-xxx-xxx.htm (accessed on 19 November 2021).
- Special Conductive Thread by AMANN: Silver-Tech+. Available online: https://www.amann.com/products/product/silver-tech-plus/ (accessed on 19 November 2021).
- Islam, T.; Mukhopadhayay, S.C. Wearable sensors for physiological parameters measurement: Physics, characteristics, design and applications. In Wearable Sensors; IOP Publishing: Bristol, UK, 2017; pp. 1–31. [Google Scholar]
- Callewaert, C.; Buysschaert, B.; Vossen, E.; Fievez, V.; Van de Wiele, T.; Boon, N. Artificial sweat composition to grow and sustain a mixed human axillary microbiome. J. Microbiol. Methods 2014, 103, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Midander, K.; Julander, A.; Kettelarij, J.; Lidén, C. Testing in artificial sweat–is less more? Comparison of metal release in two different artificial sweat solutions. Regul. Toxicol. Pharmacol. 2016, 81, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Parkova, I.; Ziemele, I.; Vilumsone, A. Fabric Selection for Textile Moisture Sensor Design. Mater. Sci. 2012, 7, 38–43. [Google Scholar]
- Hertleer, C.; Van Laere, A.; Rogier, H.; Van Langenhove, L. Influence of relative humidity on textile antenna performance. Text. Res. J. 2010, 80, 177–183. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Li, W.; Cui, W. Study on the electrical resistance of textiles under wet conditions. Text. Res. J. 2009, 79, 753–760. [Google Scholar] [CrossRef]
- Ibanez-Labiano, I.; Alomainy, A. Dielectric characterization of non-conductive fabrics for temperature sensing through resonating antenna structures. Materials 2020, 13, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hearle, J.; Morton, W. Physical Properties of Textile Fibres; Woodhead Publishing: Cambridge, UK; Elsevier: Cambridge, UK, 2008. [Google Scholar]
- Bal, K.; Kothari, V.K. Measurement of dielectric properties of textile materials and their applications. Indian J. Fibre Text. Res. 2009, 34, 191–199. Available online: http://nopr.niscair.res.in/handle/123456789/4393 (accessed on 19 November 2021).
- Hertleer, C.; Rogier, H.; Vallozzi, L.; Van Langenhove, L. A Textile Antenna for Off-Body Communication Integrated into Protective Clothing for Firefighters. Available online: https://ieeexplore.ieee.org/abstract/document/4812194/ (accessed on 19 November 2021).
- Locher, I.; Member, S.; Klemm, M.; Kirstein, T.; Tröster, G.; Member, S. Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Simic, M.; Kojic, T.; Radovanovic, M.; Stojanovic, G.M.; Al-Salami, H. Impedance spectroscopic analysis of the interidigitated flexible sensor for bacteria detection. IEEE Sens. J. 2020, 20, 12791–12798. [Google Scholar] [CrossRef]
- Jia, J.; Xu, C.; Pan, S.; Xia, S.; Wei, P.; Noh, H.Y.; Zhang, P.; Jiang, X. Conductive thread-based textile sensor for continuous perspiration level monitoring. Sensors 2018, 18, 3775. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Jin, L.; Qi, J.; Liu, Z.; Xu, L.; Hayes, S.; Gill, S.; Li, Y. Performance evaluation of conductive tracks in fabricating e-textiles by lock-stitch embroidery. J. Ind. Text. 2020. [Google Scholar] [CrossRef]
- YEltahir, A.; Saeed, H.A.M.; Xia, Y.; Yong, H.; Yimin, W. Mechanical properties, moisture absorption, and dyeability of polyamide 5, 6 fibers. J. Text. Inst. 2016, 107, 208–214. [Google Scholar] [CrossRef]
- Monson, L.; Braunwarth, M.; Extrand, C.W. Moisture absorption by various polyamides and their associated dimensional changes. J. Appl. Polym. Sci. 2008, 107, 355–363. [Google Scholar] [CrossRef]
- Pradhan, R.; Mitra, A.; Das, S. Impedimetric characterization of human blood using three-electrode based ECIS devices. J. Electr. Bioimpedance 2012, 3, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; He, H.; Gou, M.; Yang, Y.; Sydänheimo, L.; Ukkonen, L.; Virkki, J. Passive moisture sensor based on conductive and water-soluble yarns. IEEE Sens. J. 2020, 20, 10989–10995. [Google Scholar] [CrossRef]
- Mondal, S.; Kim, S.J.; Choi, C.G. Honeycomb-like MoS2 Nanotube Array-Based Wearable Sensors for Noninvasive Detection of Human Skin Moisture. ACS Appl. Mater. Interfaces 2020, 12, 17029–17038. [Google Scholar] [CrossRef]
Sample | G1 (µS) | C1 (pF) |
---|---|---|
Dry | 0.6 | 3.9 |
1 (µL) | 8.3 | 4.2 |
10 (µL) | 21.5 | 4.5 |
15 (µL) | 30.8 | 4.7 |
20 (µL) | 40.9 | 4.9 |
25 (µL) | 46.9 | 5.1 |
30 (µL) | 50.4 | 5.2 |
50 (µL) | 63.5 | 5.5 |
Sensor | Sensitivity (mΩ−1/µL) |
---|---|
Silver-tech 150 | 7.78 × 10−7 |
HC 12 | 1.18 × 10−6 |
Moisture (µL) | Adsorption Impedance (kΩ) | Desorption Impedance (kΩ) | Impedance Hysteresis (%) |
---|---|---|---|
0 | 37.4 | 37.5 | 0.2 |
1 | 34.7 | 34.8 | 0.2 |
10 | 28.2 | 28.2 | −0.1 |
15 | 24.4 | 24.5 | 0.2 |
20 | 20.7 | 20.5 | −0.9 |
25 | 18.9 | 18.8 | −1.1 |
30 | 18.2 | 18.4 | 1.1 |
50 | 15.2 | 15.4 | 0.7 |
Material | Type | Substrate | Fabrication Method | Moisture/Application | Ref |
---|---|---|---|---|---|
Silver paste | Impedance and transient plane source (TPS) | polyester woven fabric | Screen printing, ultrasonic spray coating | 1–250 µL/Sweat | [12] |
Silver-plated nylon yarn, stainless steel yarns | Resistive | Cotton/urine detection | Embroidery | 5 drops of micropipette/urine | [35] |
Conductive silver yarn, PVA yarn | UHF-RFID tag | Cotton | Embroidery | Water moisture/volume not mentioned | [60] |
Anodic aluminum oxide (AAO)- assisted MoS2 honeycomb structure | Resistive | Physical vapor deposition | (0.3–0.9) L/h/Skin moisture with respect to sweat | [61] | |
Silver plated and coated polyamide | Admittance | Cotton | Embroidery | (1–50) µL | Present research |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qureshi, S.; Stojanović, G.M.; Simić, M.; Jeoti, V.; Lashari, N.; Sher, F. Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications. Materials 2021, 14, 7813. https://doi.org/10.3390/ma14247813
Qureshi S, Stojanović GM, Simić M, Jeoti V, Lashari N, Sher F. Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications. Materials. 2021; 14(24):7813. https://doi.org/10.3390/ma14247813
Chicago/Turabian StyleQureshi, Saima, Goran M. Stojanović, Mitar Simić, Varun Jeoti, Najeebullah Lashari, and Farooq Sher. 2021. "Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications" Materials 14, no. 24: 7813. https://doi.org/10.3390/ma14247813
APA StyleQureshi, S., Stojanović, G. M., Simić, M., Jeoti, V., Lashari, N., & Sher, F. (2021). Silver Conductive Threads-Based Embroidered Electrodes on Textiles as Moisture Sensors for Fluid Detection in Biomedical Applications. Materials, 14(24), 7813. https://doi.org/10.3390/ma14247813