Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review
Abstract
:1. Introduction
2. Fundamentals of Capacitor Energy Storage
3. Structural Features and Phase Transitions in Antiferroelectrics
4. Antiferrodistortive and Ferrodistortive Phase Transitions
5. Anisotropic Energy Storage
6. In Situ Structural Shase Sransition Sathway
7. Ionic Migration across Dielectric/Metal Interfaces
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Applications of Capacitors. Available online: https://en.wikipedia.org/wiki/Applications_of_capacitors (accessed on 11 August 2021).
- Lüker, A. A Short History of Ferroelectricity. Sol-Gel Derived Ferroelectric Thin Films for Voltage Tunable Applications. Ph.D. Thesis, University of Cranfield, Cranfield, UK, 2009. [Google Scholar]
- Valasek, J. Piezo-Electric and Allied Phenomena in Rochelle Salt. Phys. Rev. 1921, 17, 475–481. [Google Scholar] [CrossRef]
- Randall, C.A.; Newnham, R.E.; Cross, L.E. History of the First Ferroelectric Oxide, BaTiO3. Available online: https://ceramics.org/ (accessed on 11 August 2021).
- Schuster, A. Potential Matter—A Holiday Dream. Nature 1989, 58, 1503. [Google Scholar] [CrossRef] [Green Version]
- Barbara, B. Louis Néel: His Multifaceted Seminal Work in Magnetism. Comptes Rendus Phys. 2019, 20, 631–649. [Google Scholar] [CrossRef]
- Kittel, C. Theory of Antiferroelectric Crystals. Phys. Rev. 1951, 82, 729–732. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Vaideeswaran, K.; Vakhrushev, S.; Filimonov, A.; Burkovsky, R.G.; Shaganov, A.; Andronikova, D.; Rudskoy, A.I.; Baron, A.; Uchiyama, H.; et al. The Origin of Antiferroelectricity in PbZrO3. Nat. Commun. 2013, 4, 2229. [Google Scholar] [CrossRef] [Green Version]
- Hlinka, J.; Ostapchuk, T.; Buixaderas, E.; Kadlec, C.; Kuzel, P.; Gregora, I.; Kroupa, J.; Savinov, M.; Klic, A.; Drahokoupil, J.; et al. Multiple Soft-Mode Vibrations of Lead Zirconate. Phys. Rev. Lett. 2014, 112, 197601. [Google Scholar] [CrossRef]
- Xu, B.; Hellman, O.; Bellaiche, L. Order-Disorder Transition in the Prototypical Antiferroelectric PbZrO3. Phys. Rev. B 2019, 100, 020102. [Google Scholar] [CrossRef] [Green Version]
- Iguez, J.; Stengel, M.; Prosandeev, S.; Bellaiche, L. First-Principles Study of the Multimode Antiferroelectric Transition in PbZrO3. Phys. Rev. B 2014, 90, 220103. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, F.; Li, Q.; Zhou, Y.; Ji, Y.; Yan, Q.; Zhang, Y.; Xi, X.; Chu, X.; Cao, W. Large Field-Induced Strain, Giant Strain Memory Effect, and High Thermal Stability Energy Storage in (Pb,La)(Zr,Sn,Ti)O3 Antiferroelectric Single Crystal. Acta Mater. 2018, 148, 28–37. [Google Scholar] [CrossRef]
- Vales-Castro, P.; Faye, R.; Vellvehi, M.; Nouchokgwe, Y.; Perpiñà, X.; Caicedo, J.M.; Jordà, X.; Roleder, K.; Kajewski, D.; Perez-Tomas, A.; et al. Origin of Large Negative Electrocaloric Effect in Antiferroelectric PbZrO3. Phys. Rev. B 2021, 103, 054112. [Google Scholar] [CrossRef]
- Geng, W.; Liu, Y.; Meng, X.; Bellaiche, L.; Scott, J.F.; Dkhil, B.; Jiang, A. Giant Negative Electrocaloric Effect in Antiferroelectric La-Doped Pb(ZrTi)O3 Thin Films near Room Temperature. Adv. Mater. 2015, 27, 3165–3169. [Google Scholar] [CrossRef] [PubMed]
- Mischenko, A.S.; Zhang, Q.; Scott, J.F.; Whatmore, R.W.; Mathur, N.D. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3. ChemInform 2006, 311, 1270–1271. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Song, C.; Sun, Y.; Fayaz, M.U.; Lu, T.; Yin, S.; Chen, C.; Xu, H.; Ren, T.-L.; Pan, F. Observation of Negative Capacitance in Antiferroelectric PbZrO3 Films. Nat. Commun. 2021, 12, 4215. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, Q.; Liu, M.; Zhang, Z.; Zhang, X.; Sun, D.; Nan, T.; Sun, N.; Chen, X. Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures. SPIN 2015, 05, 1530001. [Google Scholar] [CrossRef]
- Vopson, M.M.; Caruntu, G.; Tan, X. Polarization Reversal and Memory Effect in Anti-Ferroelectric Materials. Scr. Mater. 2017, 128, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh-Energy Density Lead-Free Dielectric Films via Polymorphic Nanodomain Design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Zuo, R.; Xie, A.; Tian, A.; Fu, J.; Zhang, Y.; Zhang, S. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains. Adv. Funct. Mater. 2019, 29, 1903877. [Google Scholar] [CrossRef]
- Pan, H.; Ma, J.; Ma, J.; Zhang, Q.; Liu, X.; Guan, B.; Gu, L.; Zhang, X.; Zhang, Y.-J.; Li, L.; et al. Giant Energy Density and High Efficiency Achieved in Bismuth Ferrite-Based Film Capacitors via Domain Engineering. Nat. Commun. 2018, 9, 1813. [Google Scholar] [CrossRef] [Green Version]
- Veerapandiyan, V.; Benes, F.; Gindel, T.; DeLuca, M. Strategies to Improve the Energy Storage Properties of Perovskite Lead-Free Relaxor Ferroelectrics: A Review. Materials 2020, 13, 5742. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.; Fan, Z.; Cui, J.; Tan, X. Relaxor Antiferroelectric Ceramics with Ultrahigh Efficiency for Energy Storage Applications. J. Eur. Ceram. Soc. 2019, 39, 4735–4742. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Ye, J.; Wang, G.; Dong, X.; Withers, R.; Liu, Y. Antiferroelectrics for Energy Storage Applications: A Review. Adv. Mater. Technol. 2018, 3, 1800111. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef]
- Hou, C.; Huang, W.; Zhao, W.; Zhang, D.; Yin, Y.; Li, X. Ultrahigh Energy Density in SrTiO3 Film Capacitors. ACS Appl. Mater. Interfaces 2017, 9, 20484–20490. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.W.; Kumar, A.; Denev, S.; Biegalski, M.D.; Maksymovych, P.; Bark, C.W.; Nelson, C.T.; Folkman, C.M.; Baek, S.H.; Balke, N.; et al. Ferroelectricity in Strain-Free SrTiO3 Thin Films. Phys. Rev. Lett. 2010, 104, 197601. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Deng, S.; Liu, H.; Sun, S.; Li, H.; Hu, S.; Liu, S.; Xing, X.; Chen, J. Strong Room-Temperature Ferroelectricity in Strained SrTiO3 Homoepitaxial Film. Adv. Mater. 2021, 33, 2008316. [Google Scholar] [CrossRef]
- Huang, K.; Ge, G.; Yan, F.; Shen, B.; Zhai, J. Ultralow Electrical Hysteresis along with High Energy-Storage Density in Lead-Based Antiferroelectric Ceramics. Adv. Electron. Mater. 2020, 6, 1901366. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Yang, T.; Zhang, S. Ultrahigh Energy-Storage Density in Antiferroelectric Ceramics with Field-Induced Multiphase Transitions. Adv. Funct. Mater. 2019, 29, 1807321. [Google Scholar] [CrossRef]
- Palneedi, H.; Peddigari, M.; Hwang, G.-T.; Jeong, D.-Y.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Chen, X.; Chen, H.; Sun, C.; Shi, J.; Pang, F.; Zhou, H. High Energy Storage Density and Power Density Achieved Simultaneously in NaNbO3-Based Lead-Free Ceramics via Antiferroelectricity Enhancement. J. Mater. 2020, 7, 629–639. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Q.; Gao, J.; Zhang, S.; Li, J. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance. Adv. Mater. 2017, 29, 1701824. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shen, Z.; Chen, X.; Yang, S.; Zhou, W.; Wang, M.; Wang, L.; Kou, Q.; Liu, Y.; Li, Q.; et al. Grain-Orientation-Engineered Multilayer Ceramic Capacitors for Energy Storage Applications. Nat. Mater. 2020, 19, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Zhang, Q.; Li, X.; Sun, T.; Fan, H.; Ke, S.; Ye, M.; Wang, Y.; Lu, W.; Niu, H.; et al. Giant Electric Energy Density in Epitaxial Lead-Free Thin Films with Coexistence of Ferroelectrics and Antiferroelectrics. Adv. Electron. Mater. 2015, 1, 1500052. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Lan, S.; Xu, S.; Zhang, Q.; Yao, H.; Liu, Y.; Meng, F.; Guo, E.-J.; Gu, L.; Yi, D.; et al. Ultrahigh Energy Storage in Superparaelectric Relaxor Ferroelectrics. Science 2021, 374, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Acharya, M.; Banyas, E.; Ramesh, M.; Jiang, Y.; Fernandez, A.; Dasgupta, A.; Ling, H.; Hanrahan, B.; Persson, K.; Neaton, J.B.; et al. Exploring the Pb1-xSrxHfO3 System and Potential for High Capacitive Energy Storage Density and Efficiency. Adv. Mater. 2021, 33, 2105967. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite Lead-Free Dielectrics for Energy Storage Applications. Prog. Mater. Sci. 2018, 102, 72–108. [Google Scholar] [CrossRef]
- Fan, Q.; Ma, C.; Li, Y.; Liang, Z.; Cheng, S.; Guo, M.; Dai, Y.; Ma, C.; Lu, L.; Wang, W.; et al. Realization of High Energy Density in an Ultra-Wide Temperature Range through Engineering of Ferroelectric Sandwich Structures. Nano Energy 2019, 62, 725–733. [Google Scholar] [CrossRef]
- Yang, C.; Lv, P.; Qian, J.; Han, Y.; Ouyang, J.; Lin, X.; Huang, S.; Cheng, Z. Fatigue-Free and Bending-Endurable Flexible Mn-Doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 Film Capacitor with an Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2019, 9, 1803949. [Google Scholar] [CrossRef]
- Ma, B.; Hu, Z.; Koritala, R.E.; Lee, T.H.; Dorris, S.E.; Balachandran, U. PLZT Film Capacitors for Power Electronics and Energy Storage Applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9279–9287. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, X.; Li, L.; Guo, S.; Huang, M.; Zhang, J.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S.-T. Ultrahigh Energy Storage Density in Lead-Free Relaxor Antiferroelectric Ceramics via Domain Engineering. Energy Storage Mater. 2021, 43, 383–390. [Google Scholar] [CrossRef]
- Qi, H.; Xie, A.; Tian, A.; Zuo, R. Superior Energy-Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3-BaTiO3-NaNbO3 Lead-Free Bulk Ferroelectrics. Adv. Energy Mater. 2019, 10, 1903338. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Cabral, M.J.; Liao, X.; Zhang, S.; Liao, C.; Zhang, G.; Chen, X.; Feng, Q.; Li, J.-F.; et al. Constructing Phase Boundary in AgNbO3 Antiferroelectrics: Pathway Simultaneously Achieving High Energy Density and Efficiency. Nat. Commun. 2020, 11, 4824. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Huang, K.; Wu, S.; Yan, F.; Li, X.; Shen, B.; Zhai, J. Synergistic Optimization of Antiferroelectric Ceramics with Superior Energy Storage Properties via Phase Structure Engineering. Energy Storage Mater. 2020, 35, 114–121. [Google Scholar] [CrossRef]
- Blue, C.T.; Hicks, J.C.; Park, S.E.; Yoshikawa, S.; Cross, L.E. In Situ X-ray Diffraction Study of the Antiferroelectric-Ferroelectric Phase Transition in PLSnZT. Appl. Phys. Lett. 1996, 68, 2942–2944. [Google Scholar] [CrossRef]
- Cai, Y.; Phillipp, F.; Zimmermann, A.; Zhou, L.; Aldinger, F.; Rühle, M. TEM Study of Superstructure in a Perovskite Lead Lanthanum Zirconate Stannate Titanate Ceramic. Acta Mater. 2003, 51, 6429–6436. [Google Scholar] [CrossRef]
- He, H.; Tan, X. Electric-Field-Induced Transformation of Incommensurate Modulations in Antiferroelectric Pb0.99Nb0.02[(Zr1-xSnx)1-yTiy]0.98O3. Phys. Rev. B 2005, 72, 024102. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Lin, D.; Chen, Z.; Cheng, Z.; Wang, J.; Li, C.; Xu, Z.; Huang, Q.; Liao, X.; Chen, L.-Q.; et al. Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design. Nat. Mater. 2018, 17, 349–354. [Google Scholar] [CrossRef]
- Tan, X.; Ma, C.; Frederick, J.; Beckman, S.; Webber, K.G. The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics. J. Am. Ceram. Soc. 2011, 94, 4091–4107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhao, Y.; Li, W.; Fei, W. High Energy Storage Density at Low Electric Field of ABO3 Antiferroelectric Films with Ionic Pair Doping. Energy Storage Mater. 2018, 18, 238–245. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Sun, N.; Hao, X. High Energy-Storage Performance of PLZS Antiferroelectric Multilayer Ceramic Capacitors. Inorg. Chem. Front. 2019, 7, 756–764. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Liu, X.Q.; Zhu, X.L.; Chen, X.M. CaTiO3 Linear Dielectric Ceramics with Greatly Enhanced Dielectric Strength and Energy Storage Density. J. Am. Ceram. Soc. 2017, 101, 1999–2008. [Google Scholar] [CrossRef]
- Ravel, B.; Slcron, N.; Yacoby, Y.; Stern, E.A.; Dogan, F.; Rehr, J.J. Order-Disorder Behavior in the Phase Transition of PbTiO3. Ferroelectrics 1995, 164, 265–277. [Google Scholar] [CrossRef]
- Salmani-Rezaie, S.; Ahadi, K.; Strickland, W.M.; Stemmer, S. Order-Disorder Ferroelectric Transition of Strained SrTiO3. Phys. Rev. Lett. 2020, 125, 087601. [Google Scholar] [CrossRef]
- Aksel, E.; Jones, J.L. Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators. Sensors 2010, 10, 1935–1954. [Google Scholar] [CrossRef] [PubMed]
- Whatmore, R.W.; Glazer, A.M. Structural Phase Transitions in Lead Zirconate. J. Phys. C Solid State Phys. 1979, 12. [Google Scholar] [CrossRef]
- Scott, B.A.; Burns, G. Crystal Growth and Observation of the Ferroelectric Phase of PbZrO3. J. Am. Ceram. Soc. 1972, 55, 331–333. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ryu, M.; Doshida, Y.; Mizuno, Y.; Randall, C. Novel High-Temperature Antiferroelectric-Based Dielectric NaNbO3-NaTaO3 Solid Solutions Processed in Low Oxygen Partial Pressures. J. Am. Ceram. Soc. 2012, 96, 531–537. [Google Scholar] [CrossRef]
- Sawaguchi, E. Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3. J. Phys. Soc. Jpn. 1953, 8, 615–629. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C.R. Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials 2015, 8, 8009–8031. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Nelson, C.T.; Zhu, X.; Serrao, C.R.; Clarkson, J.D.; Wang, Z.; Gao, Y.; Hsu, S.-L.; Dedon, L.R.; Chen, Z.; et al. A Strain-Driven Antiferroelectric-to-Ferroelectric Phase Transition in La-Doped BiFeO3 Thin Films on Si. Nano Lett. 2017, 17, 5823–5829. [Google Scholar] [CrossRef] [PubMed]
- Borisevich, A.; Eliseev, E.; Morozovska, A.N.; Cheng, C.-J.; Lin, J.-Y.; Chu, Y.-H.; Kan, D.; Takeuchi, I.; Nagarajan, V.; Kalinin, S. Atomic-Scale Evolution of Modulated Phases at the Ferroelectric-Antiferroelectric Morphotropic Phase Boundary Controlled by Flexoelectric Interaction. Nat. Commun. 2012, 3, 775. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Soejima, Y.; Fischer, K.F. Superstructure Determination of PbZrO3. Acta Crystallogr. Sect. B Struct. Sci. 1998, 54, 524–530. [Google Scholar] [CrossRef]
- Lu, Z.; Bao, W.; Wang, G.; Sun, S.-K.; Li, L.; Li, J.; Yang, H.; Ji, H.; Feteira, A.; Li, D.; et al. Mechanism of Enhanced Energy Storage Density in AgNbO3-Based Lead-Free Antiferroelectrics. Nano Energy 2020, 79, 105423. [Google Scholar] [CrossRef]
- Xie, A.; Qi, H.; Zuo, R.; Tian, A.; Chen, J.; Zhang, S. An Environmentally-Benign NaNbO3 Based Perovskite Antiferroelectric Alternative to Traditional Lead-Based Counterparts. J. Mater. Chem. C 2019, 7, 15153–15161. [Google Scholar] [CrossRef]
- Xu, X.; Huang, F.-T.; Qi, Y.; Singh, S.; Rabe, K.M.; Obeysekera, D.; Yang, J.; Chu, M.-W.; Cheong, S.-W. Kinetically Stabilized Ferroelectricity in Bulk Single-Crystalline HfO2:Y. Nat. Mater. 2021, 20, 826–832. [Google Scholar] [CrossRef]
- Silva, J.P.B.; Sekhar, K.C.; Pan, H.; MacManus-Driscoll, J.L.; Pereira, M. Advances in Dielectric Thin Films for Energy Storage Applications, Revealing the Promise of Group IV Binary Oxides. ACS Energy Lett. 2021, 6, 2208–2217. [Google Scholar] [CrossRef]
- Tsai, M.; Zheng, Y.; Lu, S.; Zheng, J.; Pan, H.; Duan, C.; Yu, P.; Huang, R.; Chu, Y. Antiferroelectric Anisotropy of Epitaxial PbHfO3 Films for Flexible Energy Storage. Adv. Funct. Mater. 2021, 31, 2105060. [Google Scholar] [CrossRef]
- Ko, D.-L.; Hsin, T.; Lai, Y.-H.; Ho, S.-Z.; Zheng, Y.; Huang, R.; Pan, H.; Chen, Y.-C.; Chu, Y.-H. High-Stability Transparent Flexible Energy Storage Based on PbZrO3/Muscovite Heterostructure. Nano Energy 2021, 87, 106149. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Cai, X.; Meingast, A.; Guo, X.; Wang, F.; Lin, Z.; Lo, T.W.; Maunders, C.; Lazar, S.; et al. Two-Dimensional Antiferroelectricity in Nanostripe-Ordered In2Se3. Phys. Rev. Lett. 2020, 125, 047601. [Google Scholar] [CrossRef]
- Xu, C.; Mao, J.; Guo, X.; Yan, S.; Chen, Y.; Lo, T.W.; Chen, C.; Lei, D.; Luo, X.; Hao, J.; et al. Two-Dimensional Ferroelasticity in van der Waals Beta′-In2Se3. Nat. Commun. 2021, 12, 3665. [Google Scholar] [CrossRef] [PubMed]
- Corker, D.L.; Glazer, A.M.; Dec, J.; Roleder, K.; Whatmore, R. A Re-investigation of the Crystal Structure of the Perovskite PbZrO3 by X-ray and Neutron Diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1997, 53, 135–142. [Google Scholar] [CrossRef]
- Mishra, S.K.; Choudhury, N.; Chaplot, S.L.; Krishna, P.S.R.; Mittal, R. Competing Antiferroelectric and Ferroelectric Interactions in NaNbO3: Neutron Diffraction and Theoretical Studies. Phys. Rev. B 2007, 76, 024110. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, H.; Guo, H.; Reyes-Lillo, S.E.; Mizuno, Y.; Rabe, K.M.; Randall, C.A. Lead-Free Antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans. 2015, 44, 10763. [Google Scholar] [CrossRef] [PubMed]
- Kagimura, R.; Singh, D.J. First-Principles Investigations of Elastic Properties and Energetics of Antiferroelectric and Ferroelectric Phases of PbZrO3. Phys. Rev. B 2008, 77, 104113. [Google Scholar] [CrossRef]
- Wei, X.-K.; Tagantsev, A.K.; Kvasov, A.; Roleder, K.; Jia, C.-L.; Setter, N. Ferroelectric Translational Antiphase Boundaries in Nonpolar Materials. Nat. Commun. 2014, 5, 3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.-K.; Jia, C.-L.; Roleder, K.; Setter, N. Polarity of Translation Boundaries in Antiferroelectric PbZrO3. Mater. Res. Bull. 2015, 62, 101–105. [Google Scholar] [CrossRef]
- Wei, X.-K.; Vaideeswaran, K.; Sandu, C.S.; Jia, C.-L.; Setter, N. Preferential Creation of Polar Translational Boundaries by Interface Engineering in Antiferroelectric PbZrO3Thin Films. Adv. Mater. Interfaces 2015, 2, 1500349. [Google Scholar] [CrossRef]
- Mani, B.K.; Chang, C.M.; Lisenkov, S.; Ponomareva, I. Critical Thickness for Antiferroelectricity in PbZrO3. Phys. Rev. Lett. 2015, 115, 097601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, A.R.; Arredondo, M.; Hähnel, A.; Morelli, A.; Becker, M.; Alexe, M.; Vrejoiu, I. Epitaxial Strain Stabilization of a Ferroelectric Phase in PbZrO3 Thin films. Phys. Rev. B 2011, 84, 054112. [Google Scholar] [CrossRef] [Green Version]
- MacLaren, I.; Villaurrutia, R.; Schaffer, B.; Houben, L.; Peláiz-Barranco, A. Atomic-Scale Imaging and Quantification of Electrical Polarisation in Incommensurate Antiferroelectric Lanthanum-Doped Lead Zirconate Titanate. Adv. Funct. Mater. 2011, 22, 261–266. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, X.; Li, Z.; Hu, T.; Zhang, L.; Lu, P.; Zhang, S.; Wang, G.; Dong, X.; Xu, F. Unveiling the Ferrielectric Nature of PbZrO3-Based Antiferroelectric Materials. Nat. Commun. 2020, 11, 3809. [Google Scholar] [CrossRef]
- Ma, T.; Fan, Z.; Xu, B.; Kim, T.-H.; Lu, P.; Bellaiche, L.; Kramer, M.J.; Tan, X.; Zhou, L. Uncompensated Polarization in Incommensurate Modulations of Perovskite Antiferroelectrics. Phys. Rev. Lett. 2019, 123, 217602. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.A.; Salje, E.K.H.; Graeme-Barber, A. Spontaneous Strain as a Determinant of Thermodynamic Properties for Phase Transitions in Minerals. Eur. J. Miner. 1998, 10, 621–691. [Google Scholar] [CrossRef]
- Puchberger, S.; Soprunyuk, V.; Schranz, W. Diverging Relaxation Times of Domain Wall Motion Indicating Glassy Dynamics in Ferroelastics. Mater. Res. 2018, 21, e20170842. [Google Scholar] [CrossRef]
- Salje, E.K. Phase Transitions in Ferroelastic and Co-Elastic Crystals; Cambridge University Press: Cambridge, UK, 1993; ISBN 0521429366. [Google Scholar]
- Watanabe, S.; Hidaka, M.; Yoshizawa, H.; Wanklyn, B.M. Antiferroelastic Structural Transitions in PrAlO3 by Means of Neutron Diffraction. Phys. Status Solidi B 2005, 243, 424–434. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 1977. [Google Scholar]
- Glazer, A.M. The Classification of Tilted Octahedra in Perovskites. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 3384–3392. [Google Scholar] [CrossRef]
- Woodward, D.I.; Reaney, I. Electron Diffraction of Tilted Perovskites. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 387–399. [Google Scholar] [CrossRef]
- Karpinsky, D.V.; Eliseev, E.; Xue, F.; Silibin, M.V.; Franz, A.; Glinchuk, M.; Troyanchuk, I.O.; Gavrilov, S.; Gopalan, V.; Chen, L.-Q.; et al. Thermodynamic Potential and Phase Diagram for Multiferroic Bismuth Ferrite (BiFeO3). NPJ Comput. Mater. 2017, 3, 20. [Google Scholar] [CrossRef]
- Gu, T.; Scarbrough, T.; Yang, Y.; Íñiguez, J.; Bellaiche, L.; Xiang, H.J. Cooperative Couplings between Octahedral Rotations and Ferroelectricity in Perovskites and Related Materials. Phys. Rev. Lett. 2018, 120, 197602. [Google Scholar] [CrossRef] [Green Version]
- Son, J.Y.; Lee, G.; Jo, M.-H.; Kim, H.; Jang, H.M.; Shin, Y.-H. Heteroepitaxial Ferroelectric ZnSnO3 Thin Film. J. Am. Chem. Soc. 2009, 131, 8386–8387. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Iñiguez, J.; Bellaiche, L. Designing Lead-Free Antiferroelectrics for Energy Storage. Nat. Commun. 2017, 8, 15682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.R.; Jang, J.; Go, K.-J.; Park, S.Y.; Roh, C.J.; Bonini, J.; Kim, J.; Lee, H.G.; Rabe, K.M.; Lee, J.S.; et al. Stabilizing Hidden Room-Temperature Ferroelectricity via a Metastable Atomic Distortion Pattern. Nat. Commun. 2020, 11, 4944. [Google Scholar] [CrossRef]
- Li, Z.; Song, D.; Yu, R.; Ge, B.; Liao, Z.; Li, Y.; Dong, S.; Zhu, J. Competing Interfacial Reconstruction Mechanisms in La0.7Sr0.3MnO3/SrTiO3 Heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 24192–24197. [Google Scholar] [CrossRef]
- El-Mellouhi, F.; Brothers, E.N.; Lucero, M.J.; Scuseria, G.E. Modeling of the Cubic and Antiferrodistortive Phases of SrTiO3 with Screened Hybrid Density Functional Theory. Phys. Rev. B 2011, 84, 115122. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.L.; Choudhury, S.; Haeni, J.H.; Biegalski, M.D.; Vasudevarao, A.; Sharan, A.; Ma, H.Z.; Levy, J.; Gopalan, V.; Trolier-McKinstry, S.; et al. Phase Transitions and Domain Structures in Strained Pseudocubic (100) SrTiO3 Thin Films. Phys. Rev. B 2006, 73, 184112. [Google Scholar] [CrossRef]
- Nova, T.F.; Disa, A.S.; Fechner, M.; Cavalleri, A. Metastable Ferroelectricity in Optically Strained SrTiO3. Science 2019, 364, 1075–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-Temperature Ferroelectricity in Strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Huang, J.; Barnard, E.S.; Hong, S.S.; Singh, P.; Wong, E.K.; Jansen, T.; Harbola, V.; Xiao, J.; Wang, B.Y.; et al. Strain-Induced Room-Temperature Ferroelectricity in SrTiO3 Membranes. Nat. Commun. 2020, 11, 3141. [Google Scholar] [CrossRef] [PubMed]
- Weaver, H. Dielectric Properties of Single Crystals of SrTiO3 at Low Temperatures. J. Phys. Chem. Solids 1959, 11, 274–277. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Courtens, E.; Arzel, L. Prediction of a Low-Temperature Ferroelectric Instability in Antiphase Domain Boundaries of Strontium Titanate. Phys. Rev. B 2001, 64, 224107. [Google Scholar] [CrossRef]
- Kvasov, A.; Tagantsev, A.K.; Setter, N. Structure and Pressure-Induced Ferroelectric Phase Transition in Antiphase Domain Boundaries of Strontium Titanate from First Principles. Phys. Rev. B 2016, 94, 054102. [Google Scholar] [CrossRef]
- Li, X.; Qiu, T.; Zhang, J.; Baldini, E.; Lu, J.; Rappe, A.M.; Nelson, K.A. Terahertz Field-Induced Ferroelectricity in Quantum Paraelectric SrTiO3. Science 2019, 364, 1079–1082. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Lu, H.; Gu, Y.; Choi, S.-Y.; Li, S.-D.; Ryu, S.; Paudel, T.R.; Song, K.; Mikheev, E.; Lee, S.; et al. Emergence of Room-Temperature Ferroelectricity at Reduced Dimensions. Science 2015, 349, 1314–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klyukin, K.; Alexandrov, V. Effect of Intrinsic Point Defects on Ferroelectric Polarization Behavior of SrTiO3. Phys. Rev. B 2017, 95, 035301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shen, Y.; Xu, B.; Zhang, Q.; Gu, L.; Jiang, J.; Ma, J.; Lin, Y.; Nan, C.-W. Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage. Adv. Mater. 2016, 28, 2055–2061. [Google Scholar] [CrossRef] [PubMed]
- Kužel, P.; Kadlec, F.; Petzelt, J.; Schubert, J.; Panaitov, G. Highly Tunable SrTiO3/DyScO3 Heterostructures for Applications in the Terahertz Range. Appl. Phys. Lett. 2007, 91, 232911. [Google Scholar] [CrossRef]
- Sluka, T.; Tagantsev, A.K.; Damjanovic, A.; Gureev, M.; Setter, N. Enhanced Electromechanical Response of Ferroelectrics Due to Charged Domain Walls. Nat. Commun. 2012, 3, 748. [Google Scholar] [CrossRef] [Green Version]
- Lisenkov, S.; Yao, Y.; Bassiri-Gharb, N.; Ponomareva, I. Prediction of High-Strain Polar Phases in Antiferroelectric PbZrO3 from a Multiscale Approach. Phys. Rev. B 2020, 102, 104101. [Google Scholar] [CrossRef]
- Ge, J.; Rémiens, D.; Costecalde, J.; Chen, Y.; Dong, X.; Wang, G. Effect of Residual Stress on Energy Storage Property in PbZrO3 Antiferroelectric Thin Films with Different Orientations. Appl. Phys. Lett. 2013, 103, 162903. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Wei, X.-K.; Feigl, L.; Damjanovic, D.; Setter, N.; Marzari, N. Asymmetric Structure of 90° Domain Walls and Interactions with Defects in PbTiO3. Phys. Rev. B 2016, 93, 144102. [Google Scholar] [CrossRef]
- Wei, X.-K.; Sluka, T.; Fraygola, B.; Feigl, L.; Du, H.; Jin, L.; Jia, C.-L.; Setter, N. Controlled Charging of Ferroelastic Domain Walls in Oxide Ferroelectrics. ACS Appl. Mater. Interfaces 2017, 9, 6539–6546. [Google Scholar] [CrossRef]
- Wei, X.K.; Jia, C.L.; Roleder, K.; Dunin-Borkowski, R.E.; Mayer, J. In Situ Observation of Point-Defect-Induced Unit-Cell-Wise Energy Storage Pathway in Antiferroelectric PbZrO3. Adv. Funct. Mater. 2021, 31, 2008609. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, Z.; Chen, X.; Li, Z.; Hu, T.; Yu, Z.; Wang, G.; Dong, X.; Xu, F. Chemically Tunable Textured Interfacial Defects in PbZrO3-Based Antiferroelectric Perovskite Oxides. Chem. Mater. 2021, 33, 6743–6751. [Google Scholar] [CrossRef]
- Luo, N.; Han, K.; Zhuo, F.; Xu, C.; Zhang, G.; Liu, L.; Chen, X.; Hu, C.; Zhou, H.; Wei, Y. Aliovalent A-Site Engineered AgNbO3 Lead-Free Antiferroelectric Ceramics toward Superior Energy Storage Density. J. Mater. Chem. A 2019, 7, 14118–14128. [Google Scholar] [CrossRef]
- Liu, H.; Fan, L.; Sun, S.; Lin, K.; Ren, Y.; Tan, X.; Xing, X.; Chen, J. Electric-Field-Induced Structure and Domain Texture Evolution in PbZrO3-Based Antiferroelectric by In-Situ High-Energy Synchrotron X-ray Diffraction. Acta Mater. 2019, 184, 41–49. [Google Scholar] [CrossRef]
- Lu, T.; Studer, A.J.; Noren, L.; Hu, W.; Yu, D.; McBride, B.; Feng, Y.; Withers, R.; Chen, H.; Xu, Z.; et al. Electric-Field-Induced AFE-FE Transitions and Associated Strain/Preferred Orientation in Antiferroelectric PLZST. Sci. Rep. 2016, 6, 23659. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Withers, R.L.; Studer, A.; Li, Q.; Norén, L.; Guo, Y. A Correlated Electron Diffraction, in Situ Neutron Diffraction and Dielectric Properties Investigation of Poled (1-x)Bi0.5Na0.5TiO3-xBaTiO3 Ceramics. J. Appl. Phys. 2011, 110, 084114. [Google Scholar] [CrossRef] [Green Version]
- Ciuchi, I.V.; Chung, C.C.; Fancher, C.M.; Guerrier, J.; Forrester, J.S.; Jones, J.L.; Mitoseriu, L.; Galassi, C. Field-Induced Antiferroelectric to Ferroelectric Transitions in (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 investigated by in Situ X-ray Diffraction. J. Europ. Ceram. Soc. 2017, 37, 4631–4636. [Google Scholar] [CrossRef]
- Fan, Z.; Xue, F.; Tutuncu, G.; Chen, L.-Q.; Tan, X. Interaction Dynamics between Ferroelectric and Antiferroelectric Domains in a PbZrO3-Based Ceramic. Phys. Rev. Appl. 2019, 11, 064050. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.-H.; Zhao, C.; Fulanović, L.; Rödel, J.; Novak, N.; Schökel, A.; Koruza, J. Revealing the Mechanism of Electric-Field-Induced Phase Transition in Antiferroelectric NaNbO3 by in Situ High-Energy X-ray Diffraction. Appl. Phys. Lett. 2021, 118, 132903. [Google Scholar] [CrossRef]
- Wei, X.; Jia, C.; Du, H.; Roleder, K.; Mayer, J.; Dunin-Borkowski, R. An Unconventional Transient Phase with Cycloidal Order of Polarization in Energy-Storage Antiferroelectric PbZrO3. Adv. Mater. 2020, 32, e1907208. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.L.; Lentzen, M.; Urban, K. Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics. Science 2003, 299, 870–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.-K.; Jia, C.-L.; Sluka, T.; Wang, B.-X.; Ye, Z.-G.; Setter, N. Néel-like Domain Walls in Ferroelectric Pb(Zr,Ti)O3 Single Crystals. Nat. Commun. 2016, 7, 12385. [Google Scholar] [CrossRef] [PubMed]
- Urban, K.W.; Jia, C.-L.; Houben, L.; Lentzen, M.; Mi, S.-B.; Tillmann, K. Negative Spherical Aberration Ultrahigh-Resolution Imaging in Corrected Transmission Electron Microscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 3735–3753. [Google Scholar] [CrossRef]
- Findlay, S.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. Dynamics of Annular Bright Field Imaging in Scanning Transmission Electron Microscopy. Ultramicroscopy 2010, 110, 903–923. [Google Scholar] [CrossRef] [PubMed]
- Lazić, I.; Bosch, E.G.; Lazar, S. Phase contrast STEM for Thin Samples: Integrated Differential Phase Contrast. Ultramicroscopy 2016, 160, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Yücelen, E.; Lazić, I.; Bosch, E.G.T. Phase Contrast Scanning Transmission Electron Microscopy Imaging of Light and Heavy Atoms at the Limit of Contrast and Resolution. Sci. Rep. 2018, 8, 2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Jiang, Y.; Shao, Y.-T.; Holtz, M.E.; Odstrčil, M.; Guizar-Sicairos, M.; Hanke, I.; Ganschow, S.; Schlom, D.G.; Muller, D.A. Electron Ptychography Achieves Atomic-Resolution Limits Set by Lattice Vibrations. Science 2021, 372, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Dwyer, C.; Sheng, G.; Zhu, C.; Li, X.; Zheng, C.; Zhu, Y. Imaging Beam-Sensitive Materials by Electron Microscopy. Adv. Mater. 2020, 32, e1907619. [Google Scholar] [CrossRef]
- Russo, C.J.; Henderson, R. Charge Accumulation in Electron Cryomicroscopy. Ultramicroscopy 2018, 187, 43–49. [Google Scholar] [CrossRef]
- Yao, L.; Majumdar, S.; Akaslompolo, L.; Inkinen, S.; Qin, Q.H.; van Dijken, S. Electron-Beam-Induced Perovskite-Brownmillerite-Perovskite Structural Phase Transitions in Epitaxial La2/3Sr1/3MnO3 Films. Adv. Mater. 2014, 26, 2789–2793. [Google Scholar] [CrossRef]
- Zheng, H.; Rivest, J.B.; Miller, T.A.; Sadtler, B.; Lindenberg, A.; Toney, M.F.; Wang, L.-W.; Kisielowski, C.; Alivisatos, A.P. Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod. Science 2011, 333, 206–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Zhou, Z.; Qiu, Y.; Gao, B.; Sun, S.; Lin, K.; Ding, L.; Li, Q.; Cao, Y.; Ren, Y.; et al. An Intriguing Intermediate State as a Bridge between Antiferroelectric and Ferroelectric Perovskites. Mater. Horiz. 2020, 7, 1912–1918. [Google Scholar] [CrossRef]
- Bittner, R.; Humer, K.; Weber, H.W.; Kundzins, K.; Sternberg, A.; Lesnyh, D.A.; Kulikov, D.V.; Trushin, Y.V. Oxygen Vacancy Defects in Antiferroelectric PbZrO3 Thin Film Heterostructures after Neutron Irradiation. J. Appl. Phys. 2004, 96, 3239–3246. [Google Scholar] [CrossRef]
- Gao, R.; Reyes-Lillo, S.E.; Xu, R.; Dasgupta, A.; Dong, Y.; Dedon, L.R.; Kim, J.; Saremi, S.; Chen, Z.; Serrao, C.R.; et al. Ferroelectricity in Pb1+δZrO3 Thin Films. Chem. Mater. 2017, 29, 6544–6551. [Google Scholar] [CrossRef] [Green Version]
- Bednyakov, P.S.; Sturman, B.I.; Sluka, T.; Tagantsev, A.K.; Yudin, P.V. Physics and Applications of Charged Domain Walls. NPJ Comput. Mater. 2018, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Sluka, T.; Tagantsev, A.K.; Bednyakov, P.; Setter, N. Free-Electron Gas at Charged Domain Walls in Insulating BaTiO3. Nat. Commun. 2013, 4, 1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, X.; Zhai, J.; Zhou, J.; Yue, Z.; Yang, J.; Zhao, W.; An, S. Structure and Electrical Properties of PbZrO3 Antiferroelectric Thin Films Doped with Barium and Strontium. J. Alloy. Compd. 2011, 509, 271–275. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, J.; Liu, Q.; Zhang, S.; Li, J.-F. Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping. ACS Appl. Mater. Interfaces 2017, 10, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Han, K.; Zhuo, F.; Liu, L.; Chen, X.; Peng, B.; Wang, X.; Feng, Q.; Wei, Y. Design for High Energy Storage Density and Temperature-Insensitive Lead-Free Antiferroelectric Ceramics. J. Mater. Chem. C 2019, 7, 4999–5008. [Google Scholar] [CrossRef]
- Chmaissem, O.; Dabrowski, B.; Kolesnik, S.; Mais, J.; Jorgensen, J.D.; Short, S. Structural and Magnetic Phase Diagrams of La1−xSrxMnO3 and Pr1−ySryMnO3. Phys. Rev. B 2003, 67, 094431. [Google Scholar] [CrossRef]
- Terasaki, I.; Ikuta, M.; Yamamoto, T.D.; Taniguchi, H. Impurity-Induced Spin-State Crossover in La0.8Sr0.2Co1−xAlxO3. Crystals 2018, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.B.; Berger, H.; Chauvet, O.; Forro, L.; Jarlborg, T.; Junod, A.; Revaz, B.; Santi, G. Transport Properties, Thermodynamic Properties, and Electronic Structure of SrRuO3. Phys. Rev. B 1996, 53, 4393. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Li, F.; Gao, P.; Li, L.; Guo, J.; Pan, X.; Jin, R.; Plummer, E.W.; Zhang, J. Origin of the Metal-Insulator Transition in Ultrathin Films of La2/3Sr2/3MnO3. Phys. Rev. B 2015, 92, 125123. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Inkinen, S.; van Dijken, S. Direct Observation of Oxygen Vacancy-Driven Structural and Resistive Phase Transitions in La2/3Sr1/3MnO3. Nat. Commun. 2017, 8, 14544. [Google Scholar] [CrossRef] [PubMed]
- Stengel, M.; Spaldin, N.A. Origin of the Dielectric Dead Layer in Nanoscale Capacitors. Nature 2006, 443, 679–682. [Google Scholar] [CrossRef]
- Stengel, M.; Nicola, D.V.; Spaldin, A. Enhancement of Ferroelectricity at Metal-Oxide Interfaces. Nat. Mater. 2009, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.-K.; Yang, Y.; McGilly, L.J.; Feigl, L.; Dunin-Borkowski, R.E.; Jia, C.-L.; Bellaiche, L.; Setter, N. Flexible Polarization Rotation at the Ferroelectric/Metal Interface as a Seed for Domain Nucleation. Phys. Rev. B 2018, 98, 020102. [Google Scholar] [CrossRef] [Green Version]
- Vailionis, A.; Boschker, H.; Siemons, W.; Houwman, E.P.; Blank, D.H.A.; Rijnders, G.; Koster, G. Misfit Strain Accommodation in Epitaxial ABO3 Perovskites: Lattice Rotations and Lattice Modulations. Phys. Rev. B 2011, 83, 064101. [Google Scholar] [CrossRef] [Green Version]
- Parsons, T.G.; D’Hondt, H.; Hadermann, J.; Hayward, M. Synthesis and Structural Characterization of La1−xAxMnO2.5 (A = Ba, Sr, Ca) Phases: Mapping the Variants of the Brownmillerite Structure. Chem. Mater. 2009, 21, 5527–5538. [Google Scholar] [CrossRef]
- Lee, H.-S.; Park, H.-H. Band Structure Analysis of La0.7Sr0.3MnO3 Perovskite Manganite Using a Synchrotron. Adv. Condens. Matter Phys. 2015, 2015, 746475. [Google Scholar] [CrossRef] [Green Version]
- Nukala, P.; Ahmadi, M.; Wei, Y.; de Graaf, S.; Stylianidis, E.; Chakrabortty, T.; Matzen, S.; Zandbergen, H.W.; Björling, A.; Mannix, D.; et al. Reversible Oxygen Migration and Phase Transitions in Hafnia-Based Ferroelectric Devices. Science 2021, 372, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Bauer, U.; Yao, L.; Tan, A.J.; Agrawal, P.; Emori, S.; Tuller, H.L.; Van Dijken, S.; Beach, G. Magneto-Ionic Control of Interfacial Magnetism. Nat. Mater. 2014, 14, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pietrowski, M.J.; De Souza, R.A.; Zhang, H.; Reaney, I.; Cook, S.N.; Kilner, J.; Sinclair, D.C. A Family of Oxide Ion Conductors Based on the Ferroelectric Perovskite Na0.5Bi0.5TiO3. Nat. Mater. 2013, 13, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P.J.; Choi, Y.; Kim, J.-W.; Patzner, J.; et al. Polar Metals by Geometric Design. Nature 2016, 533, 68–72. [Google Scholar] [CrossRef]
- Puggioni, D.; Rondinelli, J.M. Designing a Robustly Metallic Noncenstrosymmetric Ruthenate Oxide with Large Thermopower Anisotropy. Nat. Commun. 2014, 5, 3432. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Bihlmayer, G.; Zhou, X.; Feng, W.; Kolen’Ko, Y.V.; Xiong, D.; Liu, L.; Blügel, S.; Dunin-Borkowski, R.E. Discovery of Real-Space Topological Ferroelectricity in Metallic Transition Metal Phosphides. Adv. Mater. 2020, 32, e2003479. [Google Scholar] [CrossRef]
- Ali, F.; Liu, X.; Zhou, D.; Yang, X.; Xu, J.; Schenk, T.; Müller, J.; Schroeder, U.; Cao, F.; Dong, X. Silicon-Doped Hafnium Oxide Anti-Ferroelectric Thin Films for Energy Storage. J. Appl. Phys. 2017, 122, 144105. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Hwang, C.S. Thin HfxZr1−xO2 Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. Adv. Energy Mater. 2014, 4, 1400610. [Google Scholar] [CrossRef]
- Yuan, Q.; Yao, F.-Z.; Cheng, S.-D.; Wang, L.; Wang, Y.; Mi, S.-B.; Wang, Q.; Wang, X.; Wang, H. Bioinspired Hierarchically Structured All-Inorganic Nanocomposites with Significantly Improved Capacitive Performance. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Wei, X.-K.; Prokhorenko, S.; Wang, B.-X.; Liu, Z.; Xie, Y.-J.; Nahas, Y.; Jia, C.-L.; Dunin-Borkowski, R.E.; Mayer, J.; Bellaiche, L.; et al. Ferroelectric Phase-Transition Frustration near a Tricritical Composition Point. Nat. Commun. 2021, 12, 5322. [Google Scholar] [CrossRef] [PubMed]
Dielectric Films | Jrec (J/cm3) | η (%) | Pmax (μC/cm2) | EB (MV/cm) | Ref. |
SrTiO3(1) | 307 | 89 | ~125 | 6.8 | [28] |
La-Ba-Zr-doped (Na0.5Bi0.5)TiO3 (1) | 154 | 97 | 113.5 | 3.5 | [37] |
Sm-doped BiFeO3-BaTiO3(2) | 152 | > 90 | ~60 | 5.2 | [38] |
BaZr0.35Ti0.65O3 multilayer(2) | 130 | 73.8 | 52 | 8.75 | [41] |
Mn-doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3(3) | 102 | 60 | 124 | 2.86 | [42] |
La-doped Pb(Zr,Ti)O3(4) | 85 | 65 | 115 | 4.5 | [43] |
Pb0.5Sr0.5HfO3(5) | 77 | 97 | ~53 | 5.12 | [39] |
Dielectric bulks | Jrec (J/cm3) | η (%) | Pmax (μC/cm2) | EB (MV/cm) | Ref. |
Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3(3) | 21.5 | ~80 | 67 | 103 | [36] |
0.90NaNbO3-0.10BiFeO3(6) | 18.5 | 78.7 | 64 | ~1.0 | [44] |
La-doped Pb(Zr0.55Sn0.45)0.995O3(7) | 10.4 | 87 | 41.3 | 0.4 | [32] |
(Pb0.91Ba0.045La0.03)(Zr0.6Sn0.4)O3(7) | 8.16 | 92.1 | 40 | 0.34 | [31] |
BiFeO3-BaTiO3-NaNbO3(6) | 8.12 | 90 | ~52 | 0.36 | [45] |
AgNbO3-AgTaO3(6) | 7.5 | 86 | 32 | 0.53 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.-K.; Dunin-Borkowski, R.E.; Mayer, J. Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review. Materials 2021, 14, 7854. https://doi.org/10.3390/ma14247854
Wei X-K, Dunin-Borkowski RE, Mayer J. Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review. Materials. 2021; 14(24):7854. https://doi.org/10.3390/ma14247854
Chicago/Turabian StyleWei, Xian-Kui, Rafal E. Dunin-Borkowski, and Joachim Mayer. 2021. "Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review" Materials 14, no. 24: 7854. https://doi.org/10.3390/ma14247854
APA StyleWei, X. -K., Dunin-Borkowski, R. E., & Mayer, J. (2021). Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review. Materials, 14(24), 7854. https://doi.org/10.3390/ma14247854