A Mathematical Dimensional Model for Predicting Bulk Density of Inconel 718 Parts Produced by Selective Laser Melting
Abstract
:Featured Application
Abstract
1. Introduction
Selective Laser Melting
2. Materials and methods
2.1. Modelling AM by Dimensional Analysis
2.1.1. Introduction to Dimensional Analysis
2.1.2. Selective Laser Melting Dimensional Analysis
2.2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms/Variables | Definition |
SLM | Selective Laser Melting |
SLS | Selective Laser Sintering |
AM | Additive Manufacture |
3D | Three-dimensional |
SEM | Scanning Electron Microscopy |
FEM | Finite Element Method |
RMSE | Root Mean Square Error |
PSD | Particle Size Distribution |
γ/VED | Volumetric energy density, J/m3 |
v | Scanning speed, m/s |
P | Laser power, W |
κ | Heat conductivity, J/m·°K |
Cp | Specific heat capacity, J/kg·°K |
ϕ | Average powder diameter, m |
ρ | Bulk density, kg/m3 |
ρTH | Theoretical density, kg/m3 |
ton | Exposure time, s |
h | Hatch spacing, m |
t | Layer thickness, m |
pd | Point distance, m |
π0 | Dependent dimensionless product |
π1 | Independent dimensionless product |
C | Proportionality constant |
α | Fitting exponent |
References
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S. A review of metal additive manufacturing technologies. Solid State Phenom. 2018, 278, 1–14. [Google Scholar] [CrossRef]
- Wohlers, T. Additive Manufacturing and 3D Printing, State of the Industry; Annual Worldwide Progress Report; Wohlers Associations: Fort Collins, CO, USA, 2012. [Google Scholar]
- Mukherjee, T.; Zhang, W.; Debroy, T. An improved prediction of residual stresses and distortion in additive manufacturing. Comput. Mater. Sci. 2017, 126, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Mohammadi, M. Numerical tools to investigate mechanical and fatigue properties of additively manufactured MS1-H13 hybrid steels. Addit. Manuf. 2018, 23, 381–393. [Google Scholar] [CrossRef]
- Yap, C.Y.; Chua, C.K.; Dong, Z.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Mohammed, M.T. Mechanical Properties of SLM-Titanium Materials for Biomedical Applications: A Review. In Proceedings of the Materials Today: Proceedings; Elsevier BV: Amsterdam, The Netherlands, 2018; Volume 5, pp. 17906–17913. [Google Scholar]
- Das, S.; Fuesting, T.P.; Danyo, G.; Brown, L.E.; Beaman, J.J.; Bourell, D.L. Direct laser fabrication of superalloy cermet abrasive turbine blade tips. Mater. Des. 2000, 21, 63–73. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Hao, L.; Jerrard, P.; Zhang, D. Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture. Powder Technol. 2012, 231, 112–121. [Google Scholar] [CrossRef]
- Shishkovskii, I.V.; Yadroitsev, I.A.; Yu, S.I. Theory and technology of sintering, thermal, and chemicathermal treatment. Powder Metall. Met. Ceram. 2011, 50, 275–283. [Google Scholar] [CrossRef]
- Hosseini, E.; Popovich, V. A review of mechanical properties of additively manufactured Inconel 718. Addit. Manuf. 2019, 30, 100877. [Google Scholar] [CrossRef]
- Qi, H.; Azer, M.; Ritter, A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718. Met. Mater. Trans. A 2009, 40, 2410–2422. [Google Scholar] [CrossRef]
- Parimi, L.L.; Atallah, M.M.; Gebelin, J.C.; Reed, R.C. Direct laser fabrication of Inconel-718: Effects on distortion and microstructure. In Proceedings of the Superalloys 2012: 12 International Symposium on Superalloys; Huron, E.S., Reed, R.C., Hardy, M.C., Mills, M.J., Montero, R.E., Portella, P.D., Telesman, J., Eds.; The Journal of The Minerals, Metals & Materials Society (TMS): Pittsburgh, PA, USA, 2012; pp. 1–10. [Google Scholar]
- Kapłonek, W.; Nadolny, K.; Sutowska, M.; Mia, M.; Pimenov, D.Y.; Gupta, M.K. Experimental studies on MoS2-treated grinding wheel active surface condition after high-efficiency internal cylindrical grinding process of Inconel® alloy 718. Micromachines 2019, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Spears, T.G.; Gold, S.A. In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Mater. Manuf. Innov. 2016, 5, 16–40. [Google Scholar] [CrossRef] [Green Version]
- Waqar, S.; Liu, J.; Sun, Q.; Guo, K.; Sun, J. Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel. Rapid Prototyp. J. 2020, 26, 1739–1749. [Google Scholar] [CrossRef]
- Gupta, M.K.; Singla, A.K.; Ji, H.; Song, Q.; Liu, Z.; Cai, W.; Mia, M.; Khanna, N.; Krolczyk, G.M. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al–Si–10Mg alloy. J. Mater. Res. Technol. 2020, 9, 9506–9522. [Google Scholar] [CrossRef]
- Khanna, N.; Mistry, S.; Rashid, R.A.R.; Gupta, M.K. Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy. Mater. Res. Express 2019, 6, 086541. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Mandal, A.; Sathish, N.; Agrawal, A.; Srivastava, A. Investigation of porosity, microstructure and mechanical properties of additively manufactured graphene reinforced AlSi10Mg composite. Addit. Manuf. 2020, 33, 101095. [Google Scholar] [CrossRef]
- Darvish, K.; Chen, Z.W.; Phan, M.; Pasang, T. Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition. Mater. Charact. 2018, 135, 183–191. [Google Scholar] [CrossRef]
- Read, N.; Wang, W.; Essa, K.; Attallah, M.M. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater. Des. 2015, 65, 417–424. [Google Scholar] [CrossRef] [Green Version]
- AlFaify, A.; Hughes, J.; Ridgway, K. Critical evaluation of the pulsed selective laser melting process when fabricating Ti64 parts using a range of particle size distributions. Addit. Manuf. 2018, 19, 197–204. [Google Scholar] [CrossRef]
- Morgan, R.; Sutcliffe, C.J.; O’Neill, W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives. J. Mater. Sci. 2004, 39, 1195–1205. [Google Scholar] [CrossRef]
- Suzuki, A.; Nishida, R.; Takata, N.; Kobashi, M.; Kato, M. Design of laser parameters for selectively laser melted maraging steel based on deposited energy density. Addit. Manuf. 2019, 28, 160–168. [Google Scholar] [CrossRef]
- Pleass, C.; Jothi, S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by selective laser melting. Addit. Manuf. 2018, 24, 419–431. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J. Influence of laser scan speed on micro-segregation in selective laser melting of an iron-carbon alloy: A multi-scale simulation study. Procedia Manuf. 2018, 26, 941–951. [Google Scholar] [CrossRef]
- Almangour, B.; Grzesiak, D.; Yang, J.-M. Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment. Powder Technol. 2017, 309, 37–48. [Google Scholar] [CrossRef]
- Ucar, Y.; Ekren, O. Effect of layered manufacturing techniques, alloy powders, and layer thickness on mechanical properties of Co–Cr dental alloys. J. Prosthet. Dent. 2018, 120, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, U.S.; Wolfer, A.J.; Matthews, M.J.; Delplanque, J.-P.R.; Schoenung, J.M. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater. Des. 2017, 113, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Mishurova, T.; Artzt, K.; Haubrich, J.; Requena, G.; Bruno, G. New aspects about the search for the most relevant parameters optimizing SLM materials. Addit. Manuf. 2019, 25, 325–334. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, A. Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V. Opt. Laser Technol. 2019, 111, 227–239. [Google Scholar] [CrossRef]
- Enneti, R.K.; Morgan, R.; Atre, S.V. Effect of process parameters on the selective laser melting (SLM) of tungsten. Int. J. Refract. Met. Hard Mater. 2018, 71, 315–319. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S. Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials 2018, 11, 2343. [Google Scholar] [CrossRef] [Green Version]
- Moussaoui, K.; Rubio, W.; Mousseigne, M.; Sultan, T.; Rezai, F. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater. Sci. Eng. A 2018, 735, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; De Terris, T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018, 255, 536–546. [Google Scholar] [CrossRef]
- Tucho, W.M.; Lysne, V.H.; Austbø, H.; Sjolyst-Kverneland, A.; Hansen, V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloy. Compd. 2018, 740, 910–925. [Google Scholar] [CrossRef]
- Jadhav, S.D.; Dadbakhsh, S.; Goossens, L.; Kruth, J.-P.; Van Humbeeck, J.; Vanmeensel, K. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 2019, 270, 47–58. [Google Scholar] [CrossRef]
- Jing, G.; Huang, W.; Yang, H.; Wang, Z. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting. J. Mater. Sci. Technol. 2020, 48, 44–56. [Google Scholar] [CrossRef]
- Pal, S.; Gubeljak, N.; Hudak, R.; Lojen, G.; Rajtukova, V.; Predan, J.; Kokol, V.; Drstvensek, I. Tensile properties of selective laser melting products affected by building orientation and energy density. Mater. Sci. Eng. A 2019, 743, 637–647. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Qin, C.; Zong, R.; Fang, X.-Y. The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718. Mater. Des. 2020, 191, 108642. [Google Scholar] [CrossRef]
- Ghayoor, M.; Lee, K.; He, Y.; Chang, C.-H.; Paul, B.K.; Pasebani, S. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Addit. Manuf. 2020, 32, 101011. [Google Scholar] [CrossRef]
- Van Elsen, M. Complexity of Selective Laser Melting: A New Optimisation Approach. Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium, Brussel, January 2007. [Google Scholar]
- Tawfik, S.M.; Nasr, M.N.A.; El Gamal, H.A. Finite element modelling for part distortion calculation in selective laser melting. Alex. Eng. J. 2019, 58, 67–74. [Google Scholar] [CrossRef]
- Conti, P.; Cianetti, F.; Pilerci, P. Parametric finite elements model of SLM additive manufacturing process. Procedia Struct. Integr. 2018, 8, 410–421. [Google Scholar] [CrossRef]
- Sun, S.; Zheng, L.; Liu, Y.; Liu, J.; Zhang, H. Selective laser melting of Al–Fe–V–Si heat-resistant aluminum alloy powder: Modeling and experiments. Int. J. Adv. Manuf. Technol. 2015, 80, 1787–1797. [Google Scholar] [CrossRef]
- Tran, H.-C.; Lo, Y.-L. Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J. Mater. Process. Technol. 2018, 255, 411–425. [Google Scholar] [CrossRef]
- Zeng, K.; Pal, D.; Gong, H.J.; Patil, N.; Stucker, B. Comparison of 3DSIM thermal modelling of selective laser melting using new dynamic meshing method to ANSYS. Mater. Sci. Technol. 2015, 31, 945–956. [Google Scholar] [CrossRef]
- Moser, D.; Cullinan, M.; Murthy, J. Multi-scale computational modeling of residual stress in selective laser melting with uncertainty quantification. Addit. Manuf. 2019, 29, 100770. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mirzaeifar, R.; Moghaddam, N.S.; Turabi, A.S.; Karaca, H.; Elahinia, M. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Mater. Des. 2016, 112, 328–338. [Google Scholar] [CrossRef]
- Gu, H.; Wei, C.; Li, L.; Han, Q.; Setchi, R.; Ryan, M.; Li, Q. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting. Int. J. Heat Mass Transf. 2020, 151, 119458. [Google Scholar] [CrossRef]
- Ridolfi, M.R.; Folgarait, P.; Battaglia, V.; Vela, T.; Corapi, D.; Di Schino, A. Development and calibration of a CFD-based model of the bed fusion SLM additive manufacturing process aimed at optimising laser parameters. Procedia Struct. Integr. 2019, 24, 370–380. [Google Scholar] [CrossRef]
- Waqar, S.; Sun, Q.; Liu, J.; Guo, K.; Sun, J. Numerical investigation of thermal behavior and melt pool morphology in multi-track multi-layer selective laser melting of the 316L steel. Int. J. Adv. Manuf. Technol. 2021, 112, 879–895. [Google Scholar] [CrossRef]
- Van Elsen, M.; Al-Bender, F.; Kruth, J. Application of dimensional analysis to selective laser melting. Rapid Prototyp. J. 2008, 14, 15–22. [Google Scholar] [CrossRef]
- Cardaropoli, F.; Alfieri, V.; Caiazzo, F.; Sergi, V. Dimensional analysis for the definition of the influence of process parameters in selective laser melting of Ti–6Al–4V alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 1136–1142. [Google Scholar] [CrossRef]
- Khan, K.; Mohr, G.; Hilgenberg, K.; De, A. Probing a novel heat source model and adaptive remeshing technique to simulate laser powder bed fusion with experimental validation. Comput. Mater. Sci. 2020, 181, 109752. [Google Scholar] [CrossRef]
- Sonin, A.A. The Physical Basis of Dimensional Analysis, 2nd ed.; Massachusets Institute of Technology: Cambridge, MA, USA, 2001. [Google Scholar]
- Gibbings, J.C. Dimensional Analysis; Springer: London, UK, 2011. [Google Scholar]
- Tan, Q.M. Dimensional Analysis: With Case Studies in Mechanics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Simon, V.; Weigand, B.; Gomaa, H. Dimensional Analysis for Engineers; Springer: Berlin, Germany, 2017; ISBN 9783319520261. [Google Scholar]
- Kempen, K.; Thijs, L.; Van Humbeeck, J.; Kruth, J.-P. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 2012, 39, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Dilip, J.J.S.; Zhang, S.; Teng, C.; Zeng, K.; Robinson, C.; Pal, D.; Stucker, B. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2017, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Carpenter Additive PowderRange Ti64 Datasheet. Available online: https://f.hubspotusercontent10.net/hubfs/6205315/Resources/DataSheets/20201112-CT-PowderRange-TI64-AM-DataSheet_Revs.pdf (accessed on 15 January 2021).
SLM Process Parameter | Studied Property | Material | Reference |
---|---|---|---|
Laser power | Porosity and hardness | AlSi10Mg/graphene | [18] |
Grain orientation | CoCrMo | [19] | |
Porosity | AlSi10Mg | [20] | |
Densification | Ti64 | [21] | |
Scanning speed | Densification | SS316L | [22] |
Relative density, melt pool depth, and hardness | Maraging steel | [23] | |
Porosity | AlSi10Mg | [20] | |
Scan spacing | Densification | SS316L | [22] |
Relative density, melt pool depth, and hardness | Maraging steel | [23] | |
Porosity | AlSi10Mg | [20] | |
Densification | Ti64 | [21] | |
PSD | Mechanical properties and microstructure | Inconel 625 | [24] |
Powder to laser absorptivity | W | [25] | |
Powder flowability | Mechanical properties and microstructure | Inconel 625 | [24] |
Powder morphology | Hardness and microstructure | TiB2/SS316L | [26] |
Layer thickness | Mechanical, fractographic, and compositional properties | CoCr | [27] |
Exposure time | Densification | Ti64 | [21] |
Point distance | Densification | Ti64 | [21] |
SLM Process Parameter | Studied Property | Material | Reference |
---|---|---|---|
Volumetric Energy Density | Melt pool dimensions and geometry | Ti6Al4V | [30] |
Densification | W | [31] | |
Density, surface roughness, and dimensional accuracy | AlSi10Mg and Al6061 | [32] | |
Microstructure, porosity, and microhardness | Inconel 718 | [33] | |
Densification and fatigue life | Inconel 625 | [34] | |
Densification and hardness | SS316L | [35] | |
Porosity | Cu | [36] | |
Melt pool shape | 300M steel | [37] | |
Tensile properties | Ti6Al4V | [38] | |
Texture anisotropy and mechanical properties | Inconel 718 | [39] | |
Microstructural evolution, texture, and mechanical properties | SS304L | [40] |
Dimension | Symbol | Unit |
---|---|---|
Time | T | s |
Length | L | m |
Mass | M | kg |
Temperature | θ | °K |
Factor | Symbol | Units | Dimensions |
---|---|---|---|
Volumetric energy density | γ | J/m3 | ML−1T−2 |
Average particle diameter | ϕ | m | L |
Scanning speed | v | m/s | LT−1 |
Specific heat capacity | Cp | J/kg·°K | L2T−2θ−1 |
Heat conductivity | κ | W/m·°K | MLT−3θ−1 |
Bulk density | ρ | kg/m3 | ML−3 |
Element | Ni | Cr | Fe | Nb + Ta | Mo | Ti | Al | Co | Mn | Si | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
Composition (*Max) | 50–55 | 17–21 | 15–21 | 4.7–5.5 | 2.8–3.3 | 0.6–1.1 | 0.2–0.8 | 1 * | 0.35 * | 0.35 * | 0.3 * |
ID | P (W) | ton (µs) | v (m/s) | γ (J/m3) (1 × 109) |
---|---|---|---|---|
11 | 360 | 35 | 2 | 42.86 |
12 | 360 | 38 | 1.84 | 46.53 |
13 | 360 | 40 | 1.75 | 48.98 |
21 | 380 | 35 | 2 | 45.24 |
22 | 380 | 38 | 1.84 | 49.11 |
23 | 380 | 40 | 1.75 | 51.70 |
31 | 400 | 35 | 2 | 47.62 |
32 | 400 | 38 | 1.84 | 51.70 |
33 | 400 | 40 | 1.75 | 54.42 |
ID | Bulk Density (kg/m3) | Relative Density |
---|---|---|
11 | 7745.66 | 0.94575 |
12 | 7788.83 | 0.95102 |
13 | 7807.09 | 0.95325 |
21 | 7781.87 | 0.95017 |
22 | 7832.60 | 0.95636 |
23 | 7848.19 | 0.95826 |
31 | 7721.01 | 0.94274 |
32 | 7791.15 | 0.95130 |
33 | 7869.09 | 0.96082 |
ID | π1 (×10–8) | Exp. π0 (×10–7) | Mod. π0 (×10–7) | Exp. ρ (kg/m3) | Mod. ρ (kg/m3) | Error ptg. |
---|---|---|---|---|---|---|
11 | 4.60 | 7.23 | 7.24 | 7745.6633 | 7758.1974 | 0.1617% |
12 | 3.91 | 5.68 | 5.81 | 7788.8333 | 7965.0737 | 2.2626% |
13 | 3.53 | 4.88 | 5.06 | 7807.0933 | 8096.8901 | 3.7119% |
21 | 4.36 | 6.88 | 6.73 | 7781.8700 | 7616.8824 | 2.1202% |
22 | 3.70 | 5.41 | 5.40 | 7832.6033 | 7819.9905 | 0.1611% |
23 | 3.34 | 4.65 | 4.71 | 7848.1867 | 7949.4059 | 1.2896% |
31 | 4.14 | 6.49 | 6.29 | 7721.0067 | 7485.1977 | 3.0542% |
32 | 3.52 | 5.11 | 5.04 | 7791.1500 | 7684.7944 | 1.3652% |
33 | 3.17 | 4.43 | 4.40 | 7869.0900 | 7811.9724 | 0.7259% |
Element | Al | Si | Fe | Cu | Mg |
---|---|---|---|---|---|
Composition | 90.38 | 9.02 | 0.123 | 0.006 | 0.471 |
ID | v (m/s) | γ (J/m3) (1 × 109) | Relative Density | Bulk Density (kg/m3) |
---|---|---|---|---|
1 | 0.8 | 75.40 | 0.9835 | 2635.7264 |
2 | 1 | 60.32 | 0.9887 | 2649.5820 |
3 | 1.2 | 50.26 | 0.9915 | 2657.0860 |
4 | 1.4 | 43.08 | 0.9913 | 2656.6036 |
5 | 1.6 | 37.70 | 0.9887 | 2649.7964 |
6 | 0.9 | 63.49 | 0.9902 | 2653.8432 |
7 | 1.1 | 51.95 | 0.9915 | 2657.3272 |
8 | 1.3 | 43.96 | 0.9910 | 2655.7460 |
9 | 1.4 | 40.82 | 0.9891 | 2650.8148 |
10 | 1.5 | 38.10 | 0.9868 | 2644.5436 |
11 | 0.8 | 67.46 | 0.9907 | 2655.0492 |
12 | 1 | 53.97 | 0.9931 | 2661.5080 |
13 | 1.2 | 44.97 | 0.9907 | 2655.0224 |
14 | 1.4 | 38.55 | 0.9853 | 2640.6040 |
15 | 1.6 | 33.73 | 0.9772 | 2618.7888 |
16 | 0.8 | 79.37 | 0.9883 | 2648.5368 |
17 | 0.9 | 70.55 | 0.9882 | 2648.4028 |
18 | 1 | 63.49 | 0.9905 | 2654.4328 |
19 | 1.1 | 57.72 | 0.9887 | 2649.7964 |
20 | 1.2 | 52.91 | 0.9911 | 2656.1480 |
21 | 1.3 | 48.84 | 0.9916 | 2657.4612 |
22 | 1.4 | 45.35 | 0.9925 | 2659.8464 |
23 | 1.5 | 42.33 | 0.9924 | 2659.6320 |
Element | Ti | Al | V | Fe | O | C | N | H |
---|---|---|---|---|---|---|---|---|
Composition | 0.88–0.9 | 5.5–6.5 | 3.5–4.5 | <0.25 | <0.13 | <0.08 | <0.05 | <0.012 |
ID | v (m/s) | γ (J/m3) (1 × 109) | Relative Density | Bulk Density (kg/m3) |
---|---|---|---|---|
1 | 0.5 | 33.33 | 0.7764 | 3276.5346 |
2 | 0.5 | 66.67 | 0.9959 | 4202.4870 |
3 | 0.5 | 100.00 | 0.9160 | 3865.3090 |
4 | 0.5 | 130.00 | 0.9074 | 3829.3124 |
5 | 0.75 | 44.44 | 0.9362 | 3950.9328 |
6 | 0.75 | 66.67 | 0.9959 | 4202.4870 |
7 | 0.75 | 86.67 | 0.9778 | 4126.4426 |
8 | 1 | 33.33 | 0.7976 | 3365.9986 |
9 | 1 | 50.00 | 0.9970 | 4207.1290 |
10 | 1 | 65.00 | 0.9982 | 4212.4040 |
11 | 1.2 | 27.78 | 0.7465 | 3150.3144 |
12 | 1.2 | 41.67 | 0.9459 | 3991.8246 |
13 | 1.2 | 54.17 | 0.9989 | 4215.3158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Díaz, J.A.; Elías-Zúñiga, A.; Martínez-Romero, O.; Rodríguez-Salinas, J.; Olvera-Trejo, D. A Mathematical Dimensional Model for Predicting Bulk Density of Inconel 718 Parts Produced by Selective Laser Melting. Materials 2021, 14, 512. https://doi.org/10.3390/ma14030512
Estrada-Díaz JA, Elías-Zúñiga A, Martínez-Romero O, Rodríguez-Salinas J, Olvera-Trejo D. A Mathematical Dimensional Model for Predicting Bulk Density of Inconel 718 Parts Produced by Selective Laser Melting. Materials. 2021; 14(3):512. https://doi.org/10.3390/ma14030512
Chicago/Turabian StyleEstrada-Díaz, Jorge A., Alex Elías-Zúñiga, Oscar Martínez-Romero, J. Rodríguez-Salinas, and Daniel Olvera-Trejo. 2021. "A Mathematical Dimensional Model for Predicting Bulk Density of Inconel 718 Parts Produced by Selective Laser Melting" Materials 14, no. 3: 512. https://doi.org/10.3390/ma14030512
APA StyleEstrada-Díaz, J. A., Elías-Zúñiga, A., Martínez-Romero, O., Rodríguez-Salinas, J., & Olvera-Trejo, D. (2021). A Mathematical Dimensional Model for Predicting Bulk Density of Inconel 718 Parts Produced by Selective Laser Melting. Materials, 14(3), 512. https://doi.org/10.3390/ma14030512