Tribological Behavior of Phenolic Resin-Based Friction Composites Filled with Graphite
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Measurements
3. Results and Discussion
3.1. Material Features
3.2. Friction and Wear Properties
4. Conclusions
- For the Gr-free PF material, there are many grooves and spalling pits on the friction surface at the sliding speed of 3.1 m/s, indicating that the main wear mechanism is abrasive wear. Therefore, the friction coefficient and wear rate are relatively high. When the speed exceeds 7.9 m/s, cracks and shallower grooves appear on the friction surface, and the dominant wear mechanisms change to adhesive wear.
- The addition of Gr can effectively reduce the sensitivity of PF-based friction materials to sliding speeds, and thus enhance the stability of the friction coefficient. When the content of Gr is above 20 vol.%, the stability of the friction coefficient is relatively stable.
- With the addition of Gr, the friction coefficient and wear rate decrease effectively compared with the raw matrix of PF. The friction coefficient decreases with the increasing Gr content in the range of 10–30 vol.%.
- The dominant wear mechanism of PF friction material altered to fatigue wear (in the form of peeling-off) after the addition of Gr. A dense and continuous lubricating layer forms in the spalling pits where the flaky debris piles up and is compacted, which decreases the actual contact area between friction material and the steel disc; therefore, the friction coefficient and wear rate decrease and, consequently, the stability of friction coefficient under different sliding speed is enhanced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Cao, H.; Qian, Z.; Zhang, L.; Xiao, J.; Zhou, K. Tribological behavior of cu matrix composites containing graphite and tungsten disulfide. Tribol. Trans. 2014, 57, 1037–1043. [Google Scholar] [CrossRef]
- Cao, Z.; Xia, Y. Study on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pair. Tribol. Lett. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Kosec, T.; Podgornik, B. Manipulation of TiO2 nanoparticle/polymer coatings wettability and friction in different environents. Materials 2020, 13, 1702. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.Y.; Cheng, H.Z.; Lee, K.J.; Wang, C.F.; Liu, Y.C.; Wang, Y.W. Effect of carbonaceous components on tribological properties of copper-free nao friction material. Materials 2020, 13, 1163. [Google Scholar] [CrossRef] [Green Version]
- Barszcz, M.; Pashechko, M.; Dziedzic, K.; Józwik, J. Study on the self-organization of an Fe-Mn-C-B coating during friction with surface-active lubricant. Materials 2020, 13, 3025. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Z.; Yu, Z.; Zhang, C. Shear testing of the interfacial friction between an HDPE geomembrane and solid Waste. Materials 2020, 13, 1672. [Google Scholar] [CrossRef] [Green Version]
- Krbata, M.; Eckert, M.; Bartosova, L.; Barenyi, I.; Majerik, J.; Mikuš, P.; Rendkova, P. Dry sliding friction of tool steels and their comparison of wear in contact with ZrO2 and X46Cr13. Matererials 2020, 13, 2359. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, B.; Ozturk, S.; Adigüzel, A.A. Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials. Tribol. Trans. 2013, 56, 428–441. [Google Scholar] [CrossRef]
- Peng, T.; Yan, Q.; Li, G.; Zhang, X.; Zefeng, W.; Jin, X. The Braking behaviors of cu-based metallic brake pad for high-speed train under different initial braking speed. Tribol. Lett. 2017, 65, 1–13. [Google Scholar] [CrossRef]
- Su, L.; Fei, G.; Han, X.; Fu, R.; Zhang, E. Tribological behavior of copper–graphite powder third body on copper-based friction materials. Tribol. Lett. 2015, 60, 1–12. [Google Scholar] [CrossRef]
- Xiong, X.; Chen, J.; Yao, P.; Li, S.; Huang, B. Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials. Wear 2007, 262, 1182–1186. [Google Scholar] [CrossRef]
- Dastan, D.; Banpurkar, A. Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. Mater. Electron. 2017, 3851–3859. [Google Scholar] [CrossRef]
- Altaf, F.; Batool, R.; Gill, R.; Rehman, Z.U.; Majeed, H.; Ahmad, A.; Shafiq, M.; Dastan, D.; Abbas, G.; Jacob, K. Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications. Renew. Energy 2021, 164, 709–728. [Google Scholar] [CrossRef]
- Sun, L.; Liang, L.; Shi, Z.; Wang, H.; Xie, P.; Dastan, D.; Sun, K.; Fan, R. Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng. Sci. 2020, 12, 95–105. [Google Scholar] [CrossRef]
- Sun, L.; Shi, Z.; Liang, L.; Wei, S.; Wang, H.; Dastan, D.; Sun, K.; Fan, R. Layer-structured BaTiO3/P(VDF–HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C 2020, 8, 10257–10265. [Google Scholar] [CrossRef]
- Sun, L.; Shi, Z.; Wang, H.; Zhang, K.; Dastan, D.; Sun, K.; Fan, R. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A 2020, 8, 5750–5757. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, X.; Wang, H.; Wang, X.; Shi, Z. Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105814. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Liang, L.; Yin, P.; Xie, T.; Dastan, D.; Sun, K.; Fan, R.; Shi, Z. significantly enhanced dielectric permittivity and low loss in epoxy composites incorporating 3D W-WO 3 /BaTiO 3 foams. J. Mater. Sci. 2021, 56, 1–12. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Dastan, D.; Garmestani, H.; Shi, Z. fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105521. [Google Scholar] [CrossRef]
- Abbasi, S.; Wahlström, J.; Olander, L.; Larsson, C.; Olofsson, U.; Sellgren, U. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 2011, 273, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.S.E.A.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Gurunath, P.V.; Bijwe, J. Friction and wear studies on brake-pad materials based on newly developed resin. Wear 2007, 263, 1212–1219. [Google Scholar] [CrossRef]
- Kim, S.J.; Jang, H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribol. Int. 2000, 33, 477–484. [Google Scholar] [CrossRef]
- Kuroe, M.; Tsunoda, T.; Kawano, Y.; Takahashi, A. Application of lignin-modified phenolic resins to brake friction material. J. Appl. Polym. Sci. 2012, 129, 310–315. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Z. Effect of different-condition parameters on frictional properties of non-asbestos phenolic resin-based friction material. Adv. Mech. Eng. 2017, 9, 168781401771011. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.J.; Zhu, J. Wear mechanisms of kevlar pulp reinforced phenolic resin friction materials. Tribology 2001, 21, 205–209. [Google Scholar]
- Takaku, K.; Kuriyama, T.; Narisawa, I. tribology of phenolic-resin composites III. Tribology of phenolic-resin based glass fiber composites. Seikei Kakou 2009, 6, 582–588. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Betancourt, S.; Cruz, J.; Toro, A. Friction and wear in sliding contact of cast iron against phenolic resin composites reinforced with carbonaceous fibres from plantain fibre bundles. Lubr. Sci. 2012, 25, 163–172. [Google Scholar] [CrossRef]
- Eriksson, M.; Jacobson, S. Tribological surfaces of organic brake pads. Tribol. Int. 2000, 33, 817–827. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kanagaraj, G. Investigation on mechanical and tribological behaviors of pa6 and graphite-reinforced PA6 polymer composites. Arab. J. Sci. Eng. 2016, 41, 1–11. [Google Scholar]
- Aderikha, V.N.; Krasnov, A.P.; Naumkin, A.V.; Shapovalov, V.A. Effects of ultrasound treatment of expanded graphite (EG) on the sliding friction, wear resistance, and related properties of PTFE-based composites containing EG. Wear 2017, 63–71. [Google Scholar] [CrossRef]
- Aranganathan, N.; Bijwe, J. Comparative performance evaluation of nao friction materials containing natural graphite and thermo-graphite. Wear 2016, 358, 17–22. [Google Scholar] [CrossRef]
- Ghosh, P.; Ghosh, D.; Chaki, T.K.; Khastgir, D. NBR powder modified phenolic resin composite: Influence of graphite on tribological and thermal properties. Tribol. Trans. 2016, 60, 1–37. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Yu, Z. Tribological properties of organic functionalized ZrB2–Al2O3/Epoxy Composites. Tribol. Lett. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Padenko, E.; Van Rooyen, L.J.; Karger-Kocsis, J. Transfer Film Formation in PTFE/Oxyfluorinated Graphene Nanocomposites During Dry Sliding. Tribol. Lett. 2017, 65, 36. [Google Scholar] [CrossRef]
- Rhee, S.K. Friction properties of a phenolic resin filled with iron and graphite—Sensitivity to load, speed and temperature. Wear 1974, 28, 277–281. [Google Scholar] [CrossRef]
- Subramanian, C.; Asaithambi, P.; Kishore. Friction and wear of epoxy resin containing graphite. J. Reinf. Plast. Compos. 1986, 5, 200–208. [Google Scholar] [CrossRef]
- Ya-Fei, H.U.; Wang, Q.L.; Liu, Q.; Xiong, J.J. Research on forming rule of lubricant film and friction-wearing of graphite composite materials. J. China Univ. Min. Technol. 2010, 3, 223–226. [Google Scholar]
- Zhu, Z.; Bai, S.; Wu, J.; Xu, L.; Li, T.; Ren, Y.; Liu, C. Friction and wear behavior of resin/graphite composite under dry sliding. J. Mater. Sci. Technol. 2015, 31, 325–330. [Google Scholar] [CrossRef]
- Min, H.C.; Ju, J.; Kim, S.J.; Jang, H. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 2006, 260, 855–860. [Google Scholar] [CrossRef]
- Alajmi, M.; Shalwan, A. Correlation between mechanical properties with specific wear rate and the coefficient of friction of graphite/epoxy composites. Materials 2015, 8, 4162–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Bijwe, J. Composite friction materials based on metallic fillers: Sensitivity of μ to operating variables. Tribol. Int. 2011, 44, 106–113. [Google Scholar] [CrossRef]
- Cui, G.; Niu, M.; Zhu, S.; Yang, J.; Bi, Q. Dry-Sliding tribological properties of bronze–graphite composites. Tribol. Lett. 2012, 48, 111–122. [Google Scholar] [CrossRef]
- Yi, G.; Yan, F. Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers. Wear 2007, 262, 121–129. [Google Scholar] [CrossRef]
- Liu, L.; Sheng, Y.; Liu, M.; Dienwiebel, M.; Zhang, Z.; Dastan, D. Formation of the third bodies of steel sliding against brass under lubricated conditions. Tribol. Int. 2019, 140, 105727. [Google Scholar] [CrossRef]
- Liu, M.; Li, C.; Liu, L.; Ye, Y.; Dastan, D.; Garmestani, H. Inhibition of stress corrosion cracking in 304 stainless steel through titanium ion implantation. Mater. Sci. Technol. 2019, 36, 284–292. [Google Scholar] [CrossRef]
- Guang-Lei, T.; Dan, T.; Davoud, D.; Azadeh, J.; José, P.B.S.; Xi-Tao, Y. Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Proc. 2021, 122. [Google Scholar] [CrossRef]
- Gao, F.; Su-Qiang, D.U.; Rong, F.U.; Song, B.Y. Effects of graphite content on performance of copper-based friction materials. Min. Metall. Eng. 2005, 4. [Google Scholar] [CrossRef]
- Su, L.; Gao, F.; Han, X.; Chen, J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol. Int. 2015, 90, 420–425. [Google Scholar] [CrossRef]
- Puhan, D.; Bijwe, J.; Parida, T.; Trivedi, P. Investigations on performance properties of nano-micro composites based on polyetherketone, short carbon fibers and hexa-boron nitride. Sci. Adv. Mater. 2015, 7, 1002–1011. [Google Scholar] [CrossRef]
Specimens | PF (vol.%) | Gr (vol.%) |
---|---|---|
0Gr | 100 | 0 |
10Gr | 90 | 10 |
20Gr | 80 | 20 |
25Gr | 75 | 25 |
30Gr | 70 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, E.; Gao, F.; Fu, R.; Lu, Y.; Han, X.; Su, L. Tribological Behavior of Phenolic Resin-Based Friction Composites Filled with Graphite. Materials 2021, 14, 742. https://doi.org/10.3390/ma14040742
Zhang E, Gao F, Fu R, Lu Y, Han X, Su L. Tribological Behavior of Phenolic Resin-Based Friction Composites Filled with Graphite. Materials. 2021; 14(4):742. https://doi.org/10.3390/ma14040742
Chicago/Turabian StyleZhang, En, Fei Gao, Rong Fu, Yunzhuo Lu, Xiaoming Han, and Linlin Su. 2021. "Tribological Behavior of Phenolic Resin-Based Friction Composites Filled with Graphite" Materials 14, no. 4: 742. https://doi.org/10.3390/ma14040742
APA StyleZhang, E., Gao, F., Fu, R., Lu, Y., Han, X., & Su, L. (2021). Tribological Behavior of Phenolic Resin-Based Friction Composites Filled with Graphite. Materials, 14(4), 742. https://doi.org/10.3390/ma14040742