Measurements of Density of Liquid Oxides with an Aero-Acoustic Levitator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Synthesis
2.2. Measurement Procedure
2.3. Video Processing
3. Results and Discussion
3.1. Measurements on Y2O3
3.2. Measurements on Zr0.9Y0.1O1.95 and Zr0.95Y0.05O1.975
3.3. Comparison with Previously Reported Density Values
3.4. Temperature Measurements
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, A.A. Material design and development: From classical thermodynamics to CALPHAD and ICME approaches. Calphad 2015, 50, 6–22. [Google Scholar] [CrossRef] [Green Version]
- Penilla, E.H.; Devia-Cruz, L.F.; Wieg, A.T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J.E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Simpson, T.W.; Williams, C.B.; Hripko, M. Preparing industry for additive manufacturing and its applications: Summary & recommendations from a National Science Foundation workshop. Addit. Manuf. 2017, 13, 166–178. [Google Scholar]
- Ferrage, L.; Bertrand, G.; Lenormand, P.; Grossin, D.; Ben-Nissan, B. A review of the additive manufacturing (3DP) of bioceramics: Alumina, zirconia (PSZ) and hydroxyapatite. J. Aust. Ceram. Soc. 2017, 53, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Council, N.R. 3D Printing in Space; The National Academies Press: Washington, DC, USA, 2014; p. 106. [Google Scholar]
- Ferrage, L.; Bertrand, G.; Lenormand, P. Dense yttria-stabilized zirconia obtained by direct selective laser sintering. Addit. Manuf. 2018, 21, 472–478. [Google Scholar] [CrossRef] [Green Version]
- McGrath, J.R. Exploding Wire Research 1774–1963; NRL Memorandum Report 1698; U.S. Naval Research Laboratory: Washington, DC, USA, 1966. [Google Scholar]
- Gallob, R.; Jaeger, H.; Pottlacher, G. A submicrosecond pulse heating system for the investigation of thermophysical properties of metals at high temperatures. Int. J. Thermophys. 1986, 7, 139–147. [Google Scholar] [CrossRef]
- Savvatimskiy, A.I.; Onufriev, S.V.; Valyano, G.E.; Muboyadzhyan, S.A. Thermophysical properties for hafnium carbide (HfC) versus temperature from 2000 to 5000 K (experiment). J. Mater. Sci. 2020, 55, 13559–13568. [Google Scholar] [CrossRef]
- Savvatimskiy, A.I.; Onufriev, S.V.; Muboyajan, S.A.; Tsygankov, P.A. Pulsed Heating of Carbides. Bull. Russ. Acad. Sci. Phys. 2018, 82, 363–368. [Google Scholar] [CrossRef]
- Savvatimskiy, A.I.; Onufriev, S.V.; Muboyadzhyan, S.A. Measurement of ZrC properties up to 5000 K by fast electrical pulse heating method. J. Mater. Res. 2017, 32, 1287–1294. [Google Scholar] [CrossRef]
- Knyazkov, A.M.; Kurbakov, S.D.; Savvatimskiy, A.I.; Sheindlin, M.A.; Yanchuk, V.I. Melting of carbides by electrical pulse heating. High Temp. High Press. 2011, 40, 349–358. [Google Scholar]
- Wroughton, D.M.; Okress, C.E. Magnetic Levitation and Heating of Conductive Materials. U.S. Patent 2,686,864, 17 August 1954. [Google Scholar]
- Rhim, W.K.; Chung, S.K.; Barber, D.; Man, K.F.; Gutt, G.; Rulison, A.; Spjut, R.E. An Electrostatic Levitator for High-Temperature Containerless Materials Processing in 1-G. Rev. Sci. Instrum. 1993, 64, 2961–2970. [Google Scholar] [CrossRef] [Green Version]
- Szekely, J.; Schwartz, E.; Hyers, R. Electromagnetic levitation-A useful tool in microgravity research. JOM 1995, 47, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Matson, D.M.; Fair, D.J.; Hyers, R.W.; Rogers, J.R. Contrasting Electrostatic and Electromagnetic Levitation Experimental Results for Transformation Kinetics of Steel Alloys. Ann. N. Y. Acad. Sci. 2004, 1027, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Hyers Robert, W.; Rogers Jan, R. A Review of Electrostatic Levitation for Materials Research. High Temp. Mater. Process. 2008, 27, 461. [Google Scholar]
- Assael, M.J.; Armyra, I.J.; Brillo, J.; Stankus, S.V.; Wu, J.T.; Wakeham, W.A. Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc. J. Phys. Chem. Ref. Data 2012, 41, 285. [Google Scholar] [CrossRef] [Green Version]
- Kuribayashi, K. Containerless Crystallization of Semiconductors. In Solidification of Containerless Undercooled Melts; Herlach, D.M., Matson, D.M., Eds.; Wiley: Weinheim, Germany, 2012. [Google Scholar]
- Brillo, J.; Lohoefer, G.; Schmidt-Hohagen, F.; Schneider, S.; Egry, I. Thermophysical property measurements of liquid metals by electromagnetic levitation. Int. J. Mater. Prod. Technol. 2006, 26, 247–273. [Google Scholar] [CrossRef]
- Brillo, J. Thermophysical Properties of Multicomponent Liquid Alloys; De Gruyter: Berlin, Germany, 2016. [Google Scholar]
- Higuchi, K.; Kimura, K.; Mizuno, A.; Watanabe, M.; Katayama, Y.; Kuribayashi, K. Precise measurement of density and structure of undercooled molten silicon by using synchrotron radiation combined with electromagnetic levitation technique. Meas. Sci. Technol. 2005, 16, 381–385. [Google Scholar] [CrossRef]
- Shiraishi, S.Y.; Ward, R.G. The density of nickel in the superheated and supercooled liquid states. Can. Metall. Q. 1964, 3, 117–122. [Google Scholar] [CrossRef]
- Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W. Machine vision for high-precision volume measurement applied to levitated containerless material processing. Rev. Sci. Instrum. 2005, 76, 125108. [Google Scholar] [CrossRef]
- Adachi, M.; Aoyagi, T.; Mizuno, A.; Watanabe, M.; Kobatake, H.; Fukuyama, H. Precise Density Measurements for Electromagnetically Levitated Liquid Combined with Surface Oscillation Analysis. Int. J. Thermophys. 2008, 29, 2006–2014. [Google Scholar] [CrossRef]
- Watanabe, M.; Adachi, M.; Fukuyama, H. Densities of Fe-Ni melts and thermodynamic correlations. J. Mater. Sci. 2016, 51, 3303–3310. [Google Scholar] [CrossRef]
- Egry, I.; Langen, M.; Lohofer, G.; Earnshaw, J.C. Measurements of thermophysical properties of liquid metals relevant to Marangoni effects. Philos. Trans. R. Soc. Lond. Ser. A 1998, 356, 845–856. [Google Scholar] [CrossRef]
- Fukuyama, H.; Kobatake, H.; Takahashi, K.; Minato, I.; Tsukada, T.; Awaji, S. Development of modulated laser calorimetry using a solid platinum sphere as a reference. Meas. Sci. Technol. 2007, 18, 2059–2066. [Google Scholar] [CrossRef]
- Fukuyama, H.; Watanabe, M.; Adachi, M. Recent studies on thermophysical properties of metallic alloys with PROSPECT: Excess properties to construct a solution model. High Temp. High Press. 2020, 49, 851. [Google Scholar] [CrossRef]
- Ishikawa, T.; Paradis, P.F.; Yoda, S. New sample levitation initiation and imaging techniques for the processing of refractory metals with an electrostatic levitator furnace. Rev. Sci. Instrum. 2001, 72, 2490–2495. [Google Scholar] [CrossRef]
- Paradis, P.F.; Ishikawa, T.; Yu, J.; Yoda, S. Hybrid electrostatic-aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground. Rev. Sci. Instrum. 2001, 72, 2811–2815. [Google Scholar] [CrossRef]
- Paradis, P.F.; Yu, J.; Ishikawa, T.; Aoyama, T.; Yoda, S.; Weber, J.K.R. Contactless density measurement of superheated and undercooled liquid Y3Al5O12. J. Cryst. Growth 2003, 249, 523–530. [Google Scholar] [CrossRef]
- Paradis, P.-F.; Yu, J.; Ishikawa, T.; Yoda, S. Contactless Density Measurement of Liquid Nd-Doped 50%CaO–50%Al2O3. J. Am. Ceram. Soc. 2003, 86, 2234–2236. [Google Scholar] [CrossRef]
- Tamaru, H.; Koyama, C.; Saruwatari, H.; Nakamura, Y.; Ishikawa, T.; Takada, T. Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO. Microgravity Sci. Technol. 2018, 30, 643–651. [Google Scholar] [CrossRef]
- Ishikawa, T.; Koyama, C.; Saruwatari, H.; Tamaru, H.; Oda, H.; Ohshio, M.; Nakamura, Y.; Watanabe, Y.; Nakata, Y. Density of molten gadolinium oxide measured with the electrostatic levitation furnace in the International Space Station. High Temp. High Press. 2020, 49, 5–15. [Google Scholar] [CrossRef]
- Koyama, C.; Tahara, S.; Kohara, S.; Onodera, Y.; Småbråten, D.R.; Selbach, S.M.; Akola, J.; Ishikawa, T.; Masuno, A.; Mizuno, A.; et al. Very sharp diffraction peak in nonglass-forming liquid with the formation of distorted tetraclusters. NPG Asia Mater. 2020, 12, 43. [Google Scholar] [CrossRef]
- Winborne, D.A.; Nordine, P.C.; Rosner, D.E.; Marley, N.F. Aerodynamic Levitation Technique for Containerless High Temperature Studies on Liquid and Solid Samples. Metall. Mater. Trans. B 1976, 7, 711–713. [Google Scholar] [CrossRef]
- Nordine, P.C.; Atkins, R.M. Aerodynamic levitation of laser-heated solids in gas jets. Rev. Sci. Instrum. 1982, 53, 1456–1464. [Google Scholar] [CrossRef]
- Nordine, P.C.; Weber, J.K.R.; Abadie, J.G. Properties of high-temperature melts using levitation. Pure Appl. Chem. 2000, 72, 2127–2136. [Google Scholar] [CrossRef] [Green Version]
- Benmore, C.J.; Weber, J.K.R. Aerodynamic levitation, supercooled liquids and glass formation. Adv. Phys. X 2017, 2, 717–736. [Google Scholar] [CrossRef]
- Rey, C.A.; Merkley, D. Aero-Acoustic Levitation Device and Method. U.S. Patent 5,096,017, 17 March 1992. [Google Scholar]
- Nordine, P.C. Personal communication, 2020.
- Weber, R.J.K.; Hampton, S.; Merkley, D.S.; Rey, C.A.; Zatarski, M.M.; Nordine, P.C. Aero-acoustic levitation: A method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 1994, 65, 456–465. [Google Scholar] [CrossRef]
- Sato, H.; Tsukamoto, K.; Kuribayashi, K. Growth of Olivine by Aero-Acoustic Levitation: Reproduction of Meteorite Texture. J. Jap. Assoc. Cryst. Growth 1998, 25, A155. [Google Scholar]
- Nagashio, K.; Hofmeister, W.H.; Gustafson, D.E.; Altgilbers, A.; Bayuzick, R.J.; Kuribayashi, K. Formation of NdBa2Cu3O7-δ amorphous phase by combining aero-acoustic levitation and splat quenching. J. Mater. Res. 2001, 16, 138–145. [Google Scholar] [CrossRef]
- Nagashio, K.; Takamura, Y.; Kuribayashi, K.; Shiohara, Y. Microstructural control of NdBa2Cu3O7-δ superconducting oxide from highly undercooled melt by containerless processing. J. Cryst. Growth 1999, 200, 118–125. [Google Scholar] [CrossRef]
- Nordine, P.C.; Merkley, D.; Sickel, J.; Finkelman, S.; Telle, R.; Kaiser, A.; Prieler, R. A levitation instrument for containerless study of molten materials. Rev. Sci. Instrum. 2012, 83, 125107/1–125107/14. [Google Scholar] [CrossRef] [Green Version]
- Telle, R.; Greffrath, F.; Prieler, R. Direct observation of the liquid miscibility gap in the zirconia-silica system. J. Eur. Ceram. Soc. 2015, 35, 3995–4004. [Google Scholar] [CrossRef]
- Marzo, A.; Barnes, A.; Drinkwater, B. TinyLev: A multi-emitter single-axis acoustic levitator. Rev. Sci. Instrum. 2017, 88, 085105. [Google Scholar] [CrossRef]
- Ushakov, S.V.; Navrotsky, A.; Weber, R.J.K.; Neuefeind, J.C. Structure and Thermal Expansion of YSZ and La2Zr2O7 Above 1500 °C from Neutron Diffraction on Levitated Samples. J. Am. Ceram. Soc. 2015, 98, 3381–3388. [Google Scholar] [CrossRef]
- Bendert, J.C.; Gangopadhyay, A.K.; Mauro, N.A.; Kelton, K.F. Volume Expansion Measurements in Metallic Liquids and Their Relation to Fragility and Glass Forming Ability: An Energy Landscape Interpretation. Phys. Rev. Lett. 2012, 109, 185901. [Google Scholar] [CrossRef] [Green Version]
- Community, B.O. Blender-a 3D Modelling and Rendering Package. Available online: http://www.blender.org (accessed on 30 December 2020).
- Foex, M.; Traverse, P.J. Polymorphism of rare earth sesquioxides at high temperatures. Bull. Soc. Fr. Mineral. Cristallogr. 1966, 89, 184–205. [Google Scholar]
- Foex, M.; Traverse, J.P. Investigations about crystalline transformation in rare earths sesquioxides at high temperatures. Rev. Int. Hautes Temp. Refract. 1966, 3, 429–453. [Google Scholar]
- Zinkevich, M. Thermodynamics of rare earth sesquioxides. Prog. Mater. Sci. 2007, 52, 597–647. [Google Scholar] [CrossRef]
- Ushakov, S.V.; Navrotsky, A. Experimental approaches to the thermodynamics of ceramics above 1500 °C. J. Am. Ceram. Soc. 2012, 95, 1463–1482. [Google Scholar] [CrossRef]
- Cabannes, F.; Vu, T.L.; Coutures, J.P.; Foex, M. Melting point of yttria as a secondary temperature standard. High Temp. High Press. 1976, 8, 391–396. [Google Scholar]
- Granier, B.; Heurtault, S. Density of liquid rare earth sesquioxides. J. Am. Ceram. Soc. 1988, 71, C466–C468. [Google Scholar] [CrossRef]
- Kapush, D.; Ushakov, S.; Navrotsky, A.; Hong, Q.-J.; Liu, H.; van de Walle, A. A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000 °C using “drop-n-catch” calorimetry and first-principles calculation. Acta Mater. 2017, 124, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zinkevich, M.; Aldinger, F. The zirconia-hafnia system: DTA measurements and thermodynamic calculations. J. Am. Ceram. Soc. 2006, 89, 3751–3758. [Google Scholar] [CrossRef]
- Gallington, L.; Ghadar, Y.; Skinner, L.; Weber, J.; Ushakov, S.; Navrotsky, A.; Vazquez-Mayagoitia, A.; Neuefeind, J.; Stan, M.; Low, J.; et al. The Structure of Liquid and Amorphous Hafnia. Materials 2017, 10, 1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Q.-J.; Ushakov, S.V.; Kapush, D.; Benmore, C.J.; Weber, R.J.K.; van de Walle, A.; Navrotsky, A. Combined computational and experimental investigation of high temperature thermodynamics and structure of cubic ZrO2 and HfO2. Sci. Rep. 2018, 8, 14962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibieude, F.; Rouanet, A. Effect of cationic substitutions of the type A4+-Ln3+ on the polymorphism of lanthanide sesquioxides. Application to the interpretation of the equilibrium diagrams of the zirconium dioxide-lanthanide sesquioxide and thorium dioxide-lanthanide sesquioxide systems. Colloq. Int. Cent. Nat. Rech. Sci. 1972, 205, 459–468. [Google Scholar]
- Kohara, S.; Akola, J.; Patrikeev, L.; Ropo, M.; Ohara, K.; Itou, M.; Fujiwara, A.; Yahiro, J.; Okada, J.T.; Ishikawa, T.; et al. Atomic and electronic structures of an extremely fragile liquid. Nat. Commun. 2014, 5, 5892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Muta, H.; Kurosaki, K.; Kargl, F.; Yamaji, A.; Furuya, M.; Ohishi, Y. Density and viscosity of liquid ZrO2 measured by aerodynamic levitation technique. Heliyon 2019, 5, e02049. [Google Scholar] [CrossRef] [Green Version]
- Konings, R.J.M.; Beneš, O.; Kovács, A.; Manara, D.; Sedmidubský, D.; Gorokhov, L.; Iorish, V.S.; Yungman, V.; Shenyavskaya, E.; Osina, E. The Thermodynamic Properties of the f-Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides. J. Phys. Chem. Ref. Data 2014, 43, 013101. [Google Scholar] [CrossRef] [Green Version]
- Fyhrie, M.; Hong, Q.-J.; Kapush, D.; Ushakov, S.V.; Liu, H.; van de Walle, A.; Navrotsky, A. Energetics of melting of Yb2O3 and Lu2O3 from drop and catch calorimetry and first principles computations. J. Chem. Thermodyn. 2019, 132, 405–410. [Google Scholar] [CrossRef]
- Granier, B.; Heurtault, S. Method for measurement of the density of liquid refractories. Application to alumina and yttrium oxide. Rev. Int. Hautes Temp. Refract. 1983, 20, 61–67. [Google Scholar]
- Watanabe, H.; Ishii, J.; Wakabayashi, H.; Kumano, T.; Hanssen, L. Spectral Emissivity Measurements. In Experimental Methods in the Physical Sciences; Germer, T.A., Zwinkels, J.C., Tsai, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 46, pp. 333–366. [Google Scholar]
- Yamada, T.; Noguchi, T. Digital pyrometry in a solar furnace. Sol. Energy 1976, 18, 533–539. [Google Scholar] [CrossRef]
- Noguchi, T.; Kozuka, T. Temperature and emissivity measurement at 0.65 μ with a solar furnace. Sol. Energy 1966, 10, 125–131. [Google Scholar] [CrossRef]
- Krishnan, S.; Weber, J.K.R.; Schiffman, R.A.; Nordine, P.C.; Reed, R.A. Refractive index of liquid aluminum oxide at 0.6328 μm. J. Am. Ceram. Soc. 1991, 74, 881–883. [Google Scholar] [CrossRef]
- Nigara, Y. Measurement of the Optical Constants of Yttrium Oxide. Jpn. J. Appl. Phys. 1968, 7, 404–408. [Google Scholar] [CrossRef]
- Hu, H.; Zhu, C.; Lu, Y.F.; Wu, Y.H.; Liew, T.; Li, M.F.; Cho, B.J.; Choi, W.K.; Yakovlev, N. Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications. J. Appl. Phys. 2003, 94, 551–557. [Google Scholar] [CrossRef]
- Medenbach, O.; Dettmar, D.; Shannon, R.D.; Fischer, R.X.; Yen, W.M. Refractive index and optical dispersion of rare earth oxides using a small-prism technique. J. Opt. A Pure Appl. Opt. 2001, 3, 174–177. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Refractive index of cubic zirconia stabilized with yttria. Appl. Opt. 1982, 21, 2978–2981. [Google Scholar] [CrossRef]
- Stein, A.; Rabinowitz, P.; Kaldor, A. Laser Radiometer. U.S. Patent 4,417,822, 29 January 1983. [Google Scholar]
- Felice, R.A. Temperature Determining Device and Process. U.S. Patent 5,772,323, 30 June 2002. [Google Scholar]
- Felice, R.A. The spectropyrometer—a practical multi-wavelength pyrometer. AIP Conf. Proc. 2003, 684, 711–716. [Google Scholar]
- Earl, D.D.; Kisner, R.A. Emissivity Independent Optical Pyrometer. U.S. Patent 2,015,124,244, 15 March 2017. [Google Scholar]
- Pavlik, A.; Ushakov, S.V.; Navrotsky, A.; Benmore, C.J.; Weber, R.J.K. Structure and thermal expansion of Lu2O3 and Yb2O3 up to the melting points. J. Nucl. Mater. 2017, 495, 385–391. [Google Scholar] [CrossRef]
Composition | Tm, °C [Ref.] | Density g/cm3 | TEC 10−4 K−1 | Method † | Ref. |
---|---|---|---|---|---|
Y2O3 | 2431 [58] | 4.6 ± 0.15 | 3 ± 1 | AAL | This work |
4.42 | 1.9 | CNL↓ | Granier 1988 [59] | ||
4.15 ‡ | 4.5 | AI MD | Kapush 2017 [60] | ||
HfO2 | 2800 [61] | 8.2 ± 0.3 | - | AAL | This work |
8.16 | Gallington 2017 [62] | ||||
8.7 * | AI MD | Hong 2018 [63] | |||
Zr0.95Y0.05O1.975 | 2730 [64] | 4.9 ± 0.2 | 2 ± 1 | AAL | This work |
Zr0.9Y0.1O1.95 | 2750 [64] | 4.7 ± 0.2 | 3 ± 1 | AAL | This work |
ZrO2 | 2710 [61] | 4.9 | 0.9 | AI MD | Hong 2018 [63] |
5.05 | 1.8 | CNL→ | Kohara 2014 [65] | ||
4.69 ± 0.23 | 0.9 | CNL→ | Kondo 2019 [66] | ||
Yb2O3 | 2434 [67] | 8.4 ± 0.2 | - | AAL | This work |
7.94 | 0.9 | CNL↓ | Granier 1988 [59] | ||
8.75 | 4.5 | AI MD | Fyhrie 2019 [68] | ||
Er2O3 | 2417 [67] | 8.17 ± 0.16 | 1.0 | ESL(ISS) | Koyama 2020 [37] |
7.60 | 0.4 | CNL↓ | Granier 1988 [59] | ||
Gd2O3 | 2420 [67] | 7.24 ± 0.14 | 0.7 ± 0.2 | ESL(ISS) | Ishikawa 2020 [36] |
6.93 | 1.5 | CNL↓ | Granier 1988 [59] |
Composition | T, °C | n | λ, nm | εcalc | Reference for (n) Value |
---|---|---|---|---|---|
Al2O3 | 25 | 1.78 | 632.8 | 0.92 | Krishnan 1991 [73] |
Y2O3 | 25 | 1.92 | 650 | 0.90 | Nigara 1968 [74] |
HfO2 | 25 | 2.08 | 600 | 0.88 | Hu 2003 [75] |
Yb2O3 | 25 | 1.94 | 643.8 | 0.90 | Medenbach 2001 [76] |
ZrO2 12 mol% Y2O3 | 25 | 2.15 | 650 | 0.87 | Wood 1982 [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushakov, S.V.; Niessen, J.; Quirinale, D.G.; Prieler, R.; Navrotsky, A.; Telle, R. Measurements of Density of Liquid Oxides with an Aero-Acoustic Levitator. Materials 2021, 14, 822. https://doi.org/10.3390/ma14040822
Ushakov SV, Niessen J, Quirinale DG, Prieler R, Navrotsky A, Telle R. Measurements of Density of Liquid Oxides with an Aero-Acoustic Levitator. Materials. 2021; 14(4):822. https://doi.org/10.3390/ma14040822
Chicago/Turabian StyleUshakov, Sergey V., Jonas Niessen, Dante G. Quirinale, Robert Prieler, Alexandra Navrotsky, and Rainer Telle. 2021. "Measurements of Density of Liquid Oxides with an Aero-Acoustic Levitator" Materials 14, no. 4: 822. https://doi.org/10.3390/ma14040822