Performance of Green Concrete and Inorganic Coating Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Solar Photovoltaic Glass Powder
2.1.2. ICM
2.1.3. Natural Coarse and Fine Aggregate
2.1.4. Recycled Coarse and Fine Aggregate
2.2. Mix Design and Test Methods
3. Results and Discussion
3.1. Compressive Strength
3.2. Absorption Test and Initial Surface Absorption Test
3.3. Four-Pole Resistance Test
3.4. Accelerated Chloride Migration Test
3.5. Mercury Intrusion Porosimetry
3.6. Scanning Electron Microscopy
3.7. XRD Spectral Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Miao, Y.; Xiang, Y.; Kong, F.; Li, L. A sustainability comparison between green concretes and traditional concrete using an emergy ternary diagram. J. Clean. Prod. 2020, 256, 120421. [Google Scholar] [CrossRef]
- Khan, S.; Maheshwari, N.; Aglave, G.; Arora, R. Experimental design of green concrete and assessing its suitability as a sustainable building material. Mater. Today Proc. 2020, 26, 1126–1130. [Google Scholar] [CrossRef]
- Lin, W.-T.; Lin, K.; Chen, K.; Korniejenko, K.; Hebda, M.; Łach, M. Properties of controlled low strength materials with circulating fluidized bed combustion ash and recycled aggregates. Materials 2018, 11, 715. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A.; Ahmad, S.; Husain, S.M.A.; Ahmad, S.A. Replacement of cement by marble dust and ceramic waste in concrete for sustainable development. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 2, 496–503. [Google Scholar]
- Panda, C.; Mishra, K.; Panda, K.; Nayak, B. Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Constr. Build. Mater. 2013, 49, 262–271. [Google Scholar] [CrossRef]
- Paris, J.M.; Roessler, J.G.; Ferraro, C.C.; DeFord, H.D.; Townsend, T.G. A review of waste products utilized as supplements to Portland cement in concrete. J. Clean. Prod. 2016, 121, 1–18. [Google Scholar] [CrossRef]
- Su, H.; Yang, J.; Ling, T.C.; Ghataora, G.S.; Dirar, S. Properties of concrete prepared with waste tyre rubber particles of uni-form and varying sizes. J. Clean. Prod. 2015, 91, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Fernández-Jiménez, A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef]
- Faella, C.; Lima, C.; Martinelli, E.; Pepe, M.; Realfonzo, R. Mechanical and durability performance of sustainable structural concretes: An experimental study. Cem. Concr. Compos. 2016, 71, 85–96. [Google Scholar] [CrossRef]
- Rivera, F.; Martínez, P.; Castro, J.; López, M. Massive volume fly-ash concrete: A more sustainable material with fly ash re-placing cement and aggregates. Cem. Concr. Compos. 2015, 63, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Limbachiya, M.; Meddah, M.S.; Ouchagour, Y. Use of recycled concrete aggregate in fly-ash concrete. Constr. Build. Mater. 2011, 27, 439–449. [Google Scholar] [CrossRef]
- Ismail, S.; Ramli, M. Engineering properties of treated recycled concrete aggregate (RCA) for structural appli-cations. Constr. Build. Mater. 2013, 44, 464–476. [Google Scholar] [CrossRef]
- Manzi, S.; Mazzotti, C.; Bignozzi, M. Short and long-term behavior of structural concrete with recycled concrete aggregate. Cem. Concr. Compos. 2013, 37, 312–318. [Google Scholar] [CrossRef]
- Binte Huda, S.; Shahria Alam, M. Mechanical behavior of three generations of 100% repeated recycled coarse aggre-gate concrete. Constr. Build. Mater. 2014, 65, 574–582. [Google Scholar] [CrossRef]
- Pepe, M.; Toledo Filho, R.D.; Koenders, E.A.; Martinelli, E. Alternative processing procedures for recycled aggregates in structural concrete. Constr. Build. Mater. 2014, 69, 124–132. [Google Scholar] [CrossRef]
- Soares, D.L.; De Brito, J.; Ferreira, J.; Pacheco, J. Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Constr. Build. Mater. 2014, 71, 263–272. [Google Scholar] [CrossRef]
- Thomas, C.; Setién, J.; Polanco, J.A.; Lombillo, I.; Cimentada, A. Fatigue limit of recycled aggregate concrete. Constr. Build. Mater. 2014, 52, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Brand, A.S.; Roesler, J.R.; Salas, A. Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Constr. Build. Mater. 2015, 79, 83–89. [Google Scholar] [CrossRef]
- Matias, D.; Brito, J.; Rosa, A.; Pedro, D. Mechanical properties of concrete produced with recycled coarse aggregates—Influence of the use of superplasticizers. Constr. Build. Mater. 2013, 44, 101–109. [Google Scholar] [CrossRef]
- Pereira, P.; Evangelista, L.; De Brito, J. The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2012, 34, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Evangelista, L.; Brito, J. The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 2012, 28, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, E.; Jimenez, J.R.; Fernandez, J.M.; Galvín, A.; Agrela, F.; Barbudo, A. Properties of masonry mortars manufactured with fine recycled concrete aggregates. Constr. Build. Mater. 2014, 71, 289–298. [Google Scholar] [CrossRef]
- Sim, J.; Park, C. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate. Waste Manag. 2011, 31, 2352–2360. [Google Scholar] [CrossRef]
- Koshiro, Y.; Ichise, K. Application of entire concrete waste reuse model to produce recycled aggregate class H. Constr. Build. Mater. 2014, 67, 308–314. [Google Scholar] [CrossRef]
- Omary, S.; Ghorbel, E.; Wardeh, G. Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Constr. Build. Mater. 2016, 108, 163–174. [Google Scholar] [CrossRef]
- Gautam, A.; Shankar, R.; Vrat, P. End of life solar photovoltaic e-waste assessment in India: A step towards a circular economy. Sustain. Prod. Cons. 2021, 26, 65–77. [Google Scholar] [CrossRef]
- Fthenakis, V.M. End-of-life management and recycling of PV modules. Energy Policy 2000, 28, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.I.; Bashir, M.; Ahmad, S.; Tariq, T.; Chowdhary, U. Study of concrete involving use of waste glass as partial replace-ment of fine aggregates. IOSR J.Eng. 2013, 3, 8–13. [Google Scholar] [CrossRef]
- Mehta, P.K. Reducing the environmental impact of concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- Isler, J.W. Assessment of Concrete Masonry Units Containing Aggregate Replacements of Waste Glass and Rubber Tire Parti-cles. Master’s Thesis, University of Colorado at Denver, Denver, CO, USA, 2012. [Google Scholar]
- Shi, L.; Liu, J.Z.; Liu, J.P. Effect of polymer coating on the properties of surface layer concrete. Procedia Eng. 2012, 27, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.Y.; Shin, D.G.; Choi, D.S. Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system. Constr. Build. Mater. 2007, 21, 362–369. [Google Scholar] [CrossRef]
- Chen, S.-C.; Huang, R.; Hsu, H.-M.; Teng, L.-W.; Lai, Y.-P. Durability Quality Research of Cement Mortar Con-taining Solar PV Cells. Adv. Mat. Res. 2015, 1061–1062, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-C.; Huang, R.; Hsu, H.-M.; Teng, L.-W. The Strength and Durability Studies of Cement Mortar Blended with Solar PV Cells. J. Residuals Sci. Technol. 2016, 13, 149–154. [Google Scholar] [CrossRef]
- Chen, S.-C.; Huang, R.; Hsu, H.-M.; Zou, S.-Y.; Teng, L.-W. Evaluation of Penetration Depth and Protective Effec-tiveness of Concrete-Penetrating Sealer Materials. J. Mar. Sci. Technol. 2016, 24, 244–249. [Google Scholar] [CrossRef]
- Cheng, A.; Hsu, H.-M.; Chao, S.-J.; Chang, J.-R.; Teng, L.-W.; Chen, S.-C. Factors Affecting the Quality of Concrete Containing Solar PV Cells through Taguchi Method. MATEC Web Conf. 2015, 27, 01005. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.-M.; Cheng, A.; Chao, S.-J.; Chang, J.-R.; Teng, L.-W.; Chen, S.-C. The Grey Relational Analysis of Quality Investigation of Concrete Containing Solar PV Cells. MATEC Web Conf. 2015, 27, 01006. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Huang, R.; Hsu, H.M.; Chang, J.R.; Teng, L.W. Strength Quality Research of Concrete Blended with Solar PV Cells. Adv. Mater. Res. 2014, 1061, 392–395. [Google Scholar] [CrossRef]
- Chen, S.C.; Huang, R.; Hsu, H.M.; Teng, L.W.; Lai, Y.P. Durability Quality Research of Cement Mortar Containing Solar PV Cells. Adv. Mater. Res. 2014, 1025, 1020–1024. [Google Scholar] [CrossRef]
- Freitag, F.; Bruce, S. The Influence of Surface Treatments on the Service Lives of Concrete Bridges; Transport Agency research report 403; New Zealand Transport Agency: Wellington, NewZealand, October 2010.
- Hsin-Lung, H.; Huang, R.; Lin, W.-T.; Cheng, A. Pore-structures and durability of concrete containing pre-coated fine recycled mixed aggregates using pozzolan and polyvinyl alcohol materials. Constr. Build. Mater. 2018, 160, 278–292. [Google Scholar]
- Hurley, S.A. Coating. In Advanced Concrete Technology Set; Elsevier: Amsterdam, The Netherlands, 2003; Volume 4, pp. 1–14. [Google Scholar]
- Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Port-land-Cement Concrete; Annual Book of ASTM Standards, ASTM International: West Conshohocken, PA, USA, 2007; ASTM Standard C311-07.
- Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Con-crete; Annual Book of ASTM Standards, ASTM International: West Conshohocken, PA, USA, 2008; ASTM Standard C618-08a.
- Cementitious Capillary Crystalline Waterproof Material; National standards of the people’s Republic of China: Beijing, China, 2012; GB 18445-2012.
- Standard Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, USA, 2018; ASTM C33/C33M-18.
- Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM In-ternational: West Conshohocken, PA, USA, 2015; ASTM C128-15.
- Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International: West Conshohocken, PA, USA, 2015; ASTM C127-15.
- Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; American Society for Testing and Materials: West Conshohocken, PA, USA, 2013; ASTM C39/C39M–12a.
- Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM International: West Conshohocken, PA, USA, 2013.
- Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete; ASTM International: West Conshohocken, PA, USA, 2009; ASTM C876-09.
- Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration; American Society for Testing and Materials: West Conshohocken, PA, USA, 2012; ASTM C1202-12.
- Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry; American Society for Testing and Materials: West Conshohocken, PA, USA, 2010; ASTM D4404–10.
- Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy; ASTM International: West Conshohocken, PA, USA, 2016; ASTM C1723-16.
- Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Port-land-Cement Clinker Using X-Ray Powder Diffraction Analysis; ASTM International: West Conshohocken, PA, USA, 2018; ASTM C1365-18.
- Testing Concrete — Part 208: Recommendations for the Determination of the Initial Surface Absorption of Concrete; The British Standards Institution: London, UK, 1996; BS 1881-208.
- Nassar, R.U.D.; Soroushian, P. Strength and durability of recycled aggregate concrete containing milled glass as partial re-placement for cement. Constr. Build. Mater. 2012, 29, 368–377. [Google Scholar] [CrossRef]
- Almusallam, A.A.; Khan, F.M.; Dulaijan, S.U.; Al-Amoudi, O.S.B. Effectiveness of surface coatings in improving concrete durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Lin, W.-T.; Huang, R.; Chang, J.-J.; Lee, C.-L. Effect of silica fumes on the permeability of fiber cement composites. J. Chin. Inst. Eng. 2009, 32, 531–541. [Google Scholar] [CrossRef]
- Lotfy, A.; Al-Fayez, M. Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cem. Concr. Compos. 2015, 61, 36–43. [Google Scholar] [CrossRef]
- Zou, S.-Y. Evaluation of Protective Effectiveness and Crystalline Mechanism of Concrete Surface Penetrating Sealer. Doctoral Dissertation, Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung, Taiwan, 2012. [Google Scholar]
Composition | Percentage (wt.%) |
---|---|
Silicon dioxide (SiO2) | 75.92 |
Sodium oxide (Na2O) | 8.84 |
Calcium oxide (CaO) | 6.06 |
Ferric oxide (Fe2O3) | 0.29 |
Aluminum oxide (Al2O3) | 0.11 |
Magnesium oxide (MgO) | 2.74 |
Sulfur trioxide (SO3) | 2.3 |
Potassium oxide (K2O) | — |
Composition | Percentage (wt.%) |
---|---|
Silicon dioxide (SiO2) | 15.4 |
Sodium oxide (Na2O) | 3.33 |
Calcium oxide (CaO) | 64.8 |
Ferric oxide (Fe2O3) | 3.74 |
Aluminum oxide (Al2O3) | 3.26 |
Magnesium oxide (MgO) | 6.51 |
Sulfur trioxide (SO3) | 2.16 |
Potassium oxide (K2O) | 0.25 |
other | 0.55 |
Test Type | Value | Referenced Standards |
---|---|---|
fineness modulus (F.M.) | 2.8 | ASTM C33 [46] |
the specific gravity (SSD) | 2.56 | ASTM C128 [47] |
the water absorption (%) | 1.85 | ASTM C128 [47] |
Sieve Number | Mesh Size (mm) | Percentage of Stay (%) | Cumulative Percentage (%) |
---|---|---|---|
#4 | 4.75 | 0.4 | 0.4 |
#8 | 2.38 | 16.8 | 17.2 |
#16 | 1.18 | 20.5 | 37.7 |
#30 | 0.60 | 20.2 | 57.9 |
#50 | 0.30 | 18.4 | 76.3 |
#100 | 0.15 | 13.5 | 89.8 |
chassis | — | 10.2 | — |
Test Type | Value | Referenced Standards |
---|---|---|
the specific gravity (SSD) | 2.53 | ASTM C127 [48] |
the water absorption (%) | 1.68 | ASTM C127 [48] |
maximum diameter (mm) | 19.05 | ASTM C127 [48] |
Sieve Number | Mesh Size (mm) | Percentage of Stay (%) | Cumulative Percentage (%) |
---|---|---|---|
1 1/2 | 37.5 | 0 | 0 |
1 | 25 | 0 | 0 |
1/2 | 12.5 | 47.98 | 47.98 |
#4 | 4.75 | 41.94 | 89.92 |
#8 | 2.38 | 10.08 | 100 |
Test Type | Value | Referenced Standards |
---|---|---|
the specific gravity (SSD) | 2.42 | ASTM C128 [46] |
the water absorption (%) | 6.16 | ASTM C128 [46] |
fineness modulus (F.M.) | 2.43 | ASTM C33 [47] |
Sieve Number | Mesh Size (mm) | Percentage of Stay (%) | Cumulative Percentage (%) |
---|---|---|---|
3/8” | 9.53 | 0.0 | 0.0 |
#4 | 4.75 | 0.0 | 0.0 |
#8 | 2.38 | 1.8 | 1.8 |
#16 | 1.18 | 26.6 | 28.4 |
#30 | 0.60 | 23.8 | 52.2 |
#50 | 0.30 | 20.8 | 73.0 |
#100 | 0.15 | 15.0 | 88.0 |
#200 | 0.075 | 12.0 | 100.0 |
Test Type | Value | Referenced Standards |
---|---|---|
the specific gravity (SSD) | 2.47 | ASTM C127 [48] |
the water absorption (%) | 4.88 | ASTM C127 [48] |
maximum diameter (mm) | 19.00 | ASTM C127 [48] |
Sieve Number | Mesh Size (mm) | Percentage of Stay (%) | Cumulative Percentage (%) |
---|---|---|---|
1 1/2 | 37.5 | 0 | 0 |
1 | 25 | 4 | 4 |
1/2 | 12.5 | 58 | 62 |
#4 | 4.75 | 36.26 | 98.26 |
#8 | 2.38 | 1.74 | 100 |
Type | Control Group (OPC) | Green Concrete (GC) | Coating (Control Group) (OPCC) | Green Concrete (Including Coating) (GCC) |
---|---|---|---|---|
Replace cement | — | Photoelectric glass powder 5% | — | Photoelectric glass powder 5% |
Replace coarse aggregate | — | Recycled coarse aggregate 20% | — | Recycled coarse aggregate 20% |
Replace fine aggregate | — | Recycled fine aggregate 15% | — | Recycled fine aggregate 15% |
Paint type | — | — | ICM1 | ICM1 |
Coating material proportion | — | — | 5:2 | 5:2 |
Number of coating layers | — | — | 2 layers | 2 layers |
Age of coating materials | — | — | Day 1 coating | Day 1 coating |
Mix No. | w/c | Water | Cement | Solar Photovoltaic Glass Powder | Coarse Aggregates | Fine Aggregates | Replace Cement | Replace Coarse Aggregate | Replace Fine Aggregate |
---|---|---|---|---|---|---|---|---|---|
OPC | 0.6 | 240 | 396 | 0 | 1096 | 890 | 0 | 0 | 0 |
OPCC | 0.6 | 240 | 396 | 0 | 1096 | 890 | 0 | 0 | 0 |
GC | 0.6 | 240 | 376 | 18.8 | 876 | 756 | 20 | 220 | 134 |
GCC | 0.6 | 240 | 376 | 18.8 | 876 | 756 | 20 | 220 | 134 |
Test Type | Test Method | Specimen Dimensions(cm) and Types | Referenced Standards |
---|---|---|---|
Mechanical properties | Compressive strength test | ϕ 10×20 (concrete) | ASTM C39m-12 [49] |
Permeability | Absorption test | ϕ 10×5 (concrete) | ASTM C642-13 [50] |
Four pole resistance test | ϕ 10×20 (concrete) | ASTM C876 [51] | |
Accelerated chloride migration test | ϕ 10×5 (concrete) | ASTM C1202-12 [52] | |
Characterization | Mercury intrusion porosimetry | 1×1×1 (concrete) | ASTM D4404-10 [53] |
Scanning electron microscope | 1×1×1 (mortar) | ASTM C1723 [54] | |
XRD spectrum analysis | Powders | ASTM C1365 [55] |
Mix No. | 7 Day | Standard Deviations | 14 Day | Standard Deviations | 28 Day | Standard Deviations | 56 Day | Standard Deviations |
---|---|---|---|---|---|---|---|---|
OPC | 11.87 | 1.86 | 23.25 | 1.56 | 29.45 | 1.94 | 32.41 | 2.20 |
OPCC | 10.76 | 2.05 | 18.56 | 1.62 | 30.77 | 1.95 | 33.12 | 2.15 |
GC | 9.71 | 2.18 | 15.48 | 1.99 | 26.46 | 2.72 | 30.57 | 1.98 |
GCC | 9.48 | 1.96 | 15.02 | 2.31 | 26.98 | 1.78 | 32.28 | 1.87 |
Mix No. | 7 Day | 14 Day | 28 Day | 56 Day | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 min | 30 min | 60 min | 10 min | 30 min | 60 min | 10 min | 30 min | 60 min | 10 min | 30 min | 60 min | |
OPC | 0.089 | 0.071 | 0.04 | 0.096 | 0.059 | 0.047 | 0.09 | 0.05 | 0.043 | 0.077 | 0.056 | 0.043 |
OPCC | 0.107 | 0.076 | 0.039 | 0.082 | 0.053 | 0.042 | 0.082 | 0.049 | 0.033 | 0.073 | 0.043 | 0.038 |
GC | 0.118 | 0.086 | 0.056 | 0.1 | 0.076 | 0.061 | 0.095 | 0.061 | 0.051 | 0.087 | 0.055 | 0.05 |
GCC | 0.11 | 0.072 | 0.044 | 0.089 | 0.065 | 0.051 | 0.089 | 0.054 | 0.044 | 0.074 | 0.046 | 0.035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-C.; Lin, W.-T.; Huang, R.; Hsu, H.-M. Performance of Green Concrete and Inorganic Coating Materials. Materials 2021, 14, 832. https://doi.org/10.3390/ma14040832
Chen S-C, Lin W-T, Huang R, Hsu H-M. Performance of Green Concrete and Inorganic Coating Materials. Materials. 2021; 14(4):832. https://doi.org/10.3390/ma14040832
Chicago/Turabian StyleChen, Sung-Ching, Wei-Ting Lin, Ran Huang, and Hui-Mi Hsu. 2021. "Performance of Green Concrete and Inorganic Coating Materials" Materials 14, no. 4: 832. https://doi.org/10.3390/ma14040832
APA StyleChen, S.-C., Lin, W.-T., Huang, R., & Hsu, H.-M. (2021). Performance of Green Concrete and Inorganic Coating Materials. Materials, 14(4), 832. https://doi.org/10.3390/ma14040832