Comparative Study of Thermal-Oxidative Aging and Salt Solution Aging on Bitumen Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bitumen
2.2. Aging Methods
2.2.1. Thermal-Oxidative Aging
2.2.2. Salt Solution Aging
2.3. Test Methods
2.3.1. Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometer (EDS)
2.3.2. Physical Test
2.3.3. Bending Beam Rheometer (BBR)
2.3.4. Dynamic Shear Rheometer (DSR)
3. Results and Discussions
3.1. Morphology and Oxygen Content
3.2. Physical Properties
3.3. Low-Temperature Properties
3.4. High-Temperature Properties
3.5. Comparison of Bitumen Aging Degree Caused by Thermal-Oxidative Aging and Salt Solution Aging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’connell, J.; Steyn, W. An overview of the ageing of bituminous binders. In Proceedings of the Southern African Transport Conference, Pretoria, South Africa, 10–13 July 2017. [Google Scholar]
- Liu, Q.; Wu, J.; Xie, L.; Zhang, Z.; Ma, X.; Oeser, M. Micro-scale investigation of aging gradient within bitumen film around air-binder interface. Fuel 2021, 286, 119404. [Google Scholar] [CrossRef]
- Werkmeister, S.; Dawson, A.R.; Wellner, F. Pavement design model for unbound granular materials. J. Transp. Eng. 2004, 130, 665–674. [Google Scholar] [CrossRef]
- Uz, V.E.; Gokalp, I. Sustainable recovery of waste vegetable cooking oil and aged bitumen: Optimized modification for short and long term aging cases. Waste Manag. 2020, 110, 1–9. [Google Scholar] [CrossRef]
- Hu, Z.H.; Zhang, H.S.; Wang, S.W.; Xu, T. Thermal-oxidative aging mechanism of asphalt binder based on isothermal thermal analysis at the SARA level. Constr. Build. Mater. 2020, 255, 119349. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wu, S.P.; Liu, Q.T.; Xie, J.; Li, H.C.; Dai, Y.; Li, C.; Nie, S.; Song, W. Aging effects of ultraviolet lights with same dominant wavelength and different wavelength ranges on a hydrocarbon-based polymer (asphalt). Polym. Test. 2019, 75, 64–75. [Google Scholar] [CrossRef]
- Pipintakos, G.; Ching, H.V.; Soenen, H.; Sjövall, P.; Mühlich, U.; Van Doorslaer, S.; Varveri, A.; Bergh, W.V.D.; Lu, X. Experimental investigation of the oxidative ageing mechanisms in bitumen. Constr. Build. Mater. 2020, 260, 119702. [Google Scholar] [CrossRef]
- Tauste, R.; Moreno-Navarro, F.; Sol-Sanchez, M.; Rubio-Gamez, M.C. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593–609. [Google Scholar] [CrossRef]
- Camargo, I.G.D.; Hofko, B.; Mirwald, J.; Grothe, H. Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition. Materials 2020, 13, 4438. [Google Scholar] [CrossRef] [PubMed]
- Airey, G. State of the art report on ageing test methods for bituminous pavement materials. Int. J. Pavement Eng. 2003, 4, 165–176. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Zhang, Z.; Zou, B.; Zhu, Z.; Lu, G.; Xu, W.; Yu, J.; Yu, H. Effect of Aging on Chemical and Rheological Properties of Bitumen. Polymers 2018, 10, 1345. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.H.; Isacsson, U. Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 2002, 16, 15–22. [Google Scholar] [CrossRef]
- Lin, P.; Yan, C.; Huang, W.; Li, Y.; Zhou, L.; Tang, N.; Xiao, F.; Zhang, Y.; Lv, Q. Rheological, chemical and aging characteristics of high content polymer modified asphalt. Constr. Build. Mater. 2019, 207, 616–629. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, S.N.; Karakouzian, M.; Khalili, M. Rheology evaluations of WMA binders using ultraviolet and PAV aging procedures. Constr. Build. Mater. 2015, 79, 56–64. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Han, J. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS-and SBS/sulfur-modified asphalts. Constr. Build. Mater. 2011, 25, 129–137. [Google Scholar] [CrossRef]
- Zhang, H.L.; Chen, Z.H.; Xu, G.Q.; Shi, C.J. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel 2018, 221, 78–88. [Google Scholar] [CrossRef]
- Hou, X.D.; Xiao, F.P.; Wang, J.G.; Amirkhanian, S. Identification of asphalt aging characterization by spectrophotometry technique. Fuel 2018, 226, 230–239. [Google Scholar] [CrossRef]
- Liu, X.; Sha, A.; Li, C.; Zhang, Z.; Li, H. Influence of water on warm-modified asphalt: Views from adhesion, morphology and chemical characteristics. Constr. Build. Mater. 2020, 264, 120159. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, X.M.; Wu, S.P.; Ye, Y.; Li, Y.Y. Influence of Water Solute Exposure on the Chemical Evolution and Rheological Properties of Asphalt. Materials 2018, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Pang, L.; Zou, Y.X.; Liu, Q.T.; Xie, J. The effect of water solution erosion on rheological, cohesion and adhesion properties of asphalt. Constr. Build. Mater. 2020, 246, 118465. [Google Scholar] [CrossRef]
- Wu, H.N.; Li, P.; Nian, T.F.; Zhang, G.H.; He, T.; Wei, X.Y. Evaluation of asphalt and asphalt mixtures’ water stability method under multiple freeze-thaw cycles. Constr. Build. Mater. 2019, 228, 117089. [Google Scholar] [CrossRef]
- Yue, Y.Y.; Niu, S.J.; Zhao, L.J.; Zhang, Y.; Xu, F. Chemical Composition of Sea Fog Water Along the South China Sea. Pure Appl. Geophys. 2012, 169, 2231–2249. [Google Scholar] [CrossRef]
- Ordonez-Barona, C.; Sabetski, V.; Millward, A.A.; Steenberg, J. De-icing salt contamination reduces urban tree performance in structural soil cells. Environ. Pollut. 2018, 234, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, W.; Han, F. Performance deterioration mechanism and improvement techniques of asphalt mixture in salty and humid environment. Constr. Build. Mater. 2019, 208, 749–757. [Google Scholar] [CrossRef]
- Institute, A. Performance Graded Asphalt Binder Specification and Testing; Asphalt Institute: Lexington, KY, USA, 2003. [Google Scholar]
- Tian, Y.; Li, H.; Zhang, H.; Yang, B.; Zuo, X.; Wang, H. Comparative investigation on three laboratory testing methods for short-term aging of asphalt binder. Constr. Build. Mater. 2021, 266, 121204. [Google Scholar] [CrossRef]
- Zordao, L.H.P.; Oliveira, V.A.; Totten, G.E.; Canale, L.C.F. Quenching power of aqueous salt solution. Int. J. Heat Mass Transf. 2019, 140, 807–818. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Y.F.; Xie, W.; Wu, J.J. Evaluation of road performance and adhesive characteristic of asphalt binder in salt erosion environment. Mater. Today Commun. 2020, 25, 101593. [Google Scholar] [CrossRef]
- Su, M.M.; Si, C.D.; Zhang, Z.P.; Zhang, H.L. Molecular dynamics study on influence of Nano-ZnO/SBS on physical properties and molecular structure of asphalt binder. Fuel 2020, 263, 116777. [Google Scholar] [CrossRef]
- Lu, X.H.; Isacsson, U. Artificial aging of polymer modified bitumens. J. Appl. Polym. Sci. 2000, 76, 1811–1824. [Google Scholar] [CrossRef]
- Hung, A.M.; Goodwin, A.; Fini, E.H. Effects of water exposure on bitumen surface microstructure. Constr. Build. Mater. 2017, 135, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Tan, X.; Ma, T.; Cao, F.; Xia, Z.; Liu, H.; Ning, H.; Li, Z.; Hu, H.; Wu, M. Reinforced Atomically Dispersed Fe− N− C Catalysts Derived from Petroleum Asphalt for Oxygen Reduction Reaction. J. Colloid Interface Sci. 2021, 587, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Guo, H.Y.; Wang, X.F.; Zhang, M.X.; Wang, Z.J.; Yang, B. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- He, R.; Zheng, S.N.; Chen, H.X.; Kuang, D.L. Investigation of the physical and rheological properties of Trinidad lake asphalt modified bitumen. Constr. Build. Mater. 2019, 203, 734–739. [Google Scholar] [CrossRef]
- Mirsepahi, M.; Tanzadeh, J.; Ghanoon, S.A. Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer. Constr. Build. Mater. 2020, 233, 117183. [Google Scholar] [CrossRef]
- Belc, A.L.; Pop, I.O.; Belc, F.; Costescu, C.; Tehrani, F.F. Influence of warm mix additives on the low-temperature behavior of bitumen using the Bending Beam Rheometer (BBR). Constr. Build. Mater. 2020, 121682. [Google Scholar]
- Pszczola, M.; Jaczewski, M.; Rys, D.; Jaskula, P.; Szydlowski, C. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test. Materials 2018, 11, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.; Li, B.; Sun, D.; Yu, F.; Hu, M. Chemo-rheological and morphology evolution of polymer modified bitumens under thermal oxidative and all-weather aging. Fuel 2021, 285, 118989. [Google Scholar] [CrossRef]
- Liu, G.; Liang, Y.S.; Chen, H.; Wang, H.; Komacka, J.; Gu, X. Influence of the chemical composition and the morphology of crumb rubbers on the rheological and self-healing properties of bitumen. Constr. Build. Mater. 2019, 210, 555–563. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, W.; Polaczyk, P.A.; Han, B.; Xiao, R.; Zhang, M.; Huang, B. Rheological and aging characteristics of the recycled asphalt binders with different rejuvenator incorporation methods. J. Clean. Prod. 2020, 262, 121249. [Google Scholar] [CrossRef]
- Wang, H.N.; Dang, Z.X.; You, Z.P.; Cao, D.W. Effect of warm mixture asphalt (WMA) additives on high failure temperature properties for crumb rubber modified (CRM) binders. Constr. Build. Mater. 2012, 35, 281–288. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.D.; Lin, J.T.; Li, M.L.; Chen, Z.W. Correlation of asphalt performance indicators and aging Degrees: A review. Constr. Build. Mater. 2020, 250, 118824. [Google Scholar] [CrossRef]
Property | Penetration (25 °C) | Softening Point | Viscosity (60 °C) | Limited Temperature in BBR Test |
---|---|---|---|---|
Neat bitumen | 70 dmm | 48.2 °C | 188 Pa∙s | −18 °C |
Test standard | NS-EN 1426:2015 | NS-EN 1427:2015 | NS-EN 13702:2018 | Performance grade [25] |
Parameter | TFOT Aging | PAV Aging |
---|---|---|
Temperature | 163 °C | 100 °C |
Aging time | 5 h | 20 h |
Bitumen mass | 50 g | 50 g |
Standard | NS-EN 12607-2:2014 | NS-EN 14769:2012 |
Parameter | 10% NaCl/CaCl2 Aging |
---|---|
Temperature | 25 °C |
Aging time | 90 days |
Bitumen mass | 28 g |
Diameter of container | 190 mm |
Setting | Sweep Frequency | Strain Value | Test Temperature (°C) |
---|---|---|---|
Value | 0.1–400 rad/s | 1% | 30, 40, 50, 60, 70, 80 |
Bitumen Type | Neat Bitumen | TFOT Aged Bitumen | PAV Aged Bitumen | 10% NaCl Aged Bitumen | 10% CaCl2 Aged Bitumen |
---|---|---|---|---|---|
Limited temperature [°C] | −18 | −12 | −12 | −12 | −12 |
Bitumen Type | Neat Bitumen | TFOT Aged Bitumen | PAV Aged Bitumen | 10% NaCl Aged Bitumen | 10% CaCl2 Aged Bitumen |
---|---|---|---|---|---|
Failure temperature (°C) | 65 | 70 | 74 | 69 | 68 |
Aging Method | TFOT | PAV | 10% NaCl | 10% CaCl2 |
---|---|---|---|---|
AF-Oxygen content | 1.33 | 3.37 | 2.19 | 1.93 |
AF-Penetration | −0.23 | −0.51 | −0.50 | −0.27 |
AF-Softening point | 0.12 | 0.21 | 0.13 | 0.07 |
AF-Complex viscosity | 2.00 | 9.05 | 3.71 | 2.29 |
-S | 0.86 | 1.01 | 0.87 | 0.24 |
-m-value | −0.11 | −0.21 | −0.17 | −0.11 |
-Complex shear modulus |G*| | 0.75 | 1.75 | 0.49 | 0.35 |
-Phase angle δ | −0.05 | −0.10 | −0.03 | −0.02 |
-Rutting factor |G*|/sin δ | 0.78 | 1.84 | 0.50 | 0.36 |
Sum of absolute value of all AF | 6.23 | 18.05 | 8.59 | 5.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hoff, I. Comparative Study of Thermal-Oxidative Aging and Salt Solution Aging on Bitumen Performance. Materials 2021, 14, 1174. https://doi.org/10.3390/ma14051174
Zhang X, Hoff I. Comparative Study of Thermal-Oxidative Aging and Salt Solution Aging on Bitumen Performance. Materials. 2021; 14(5):1174. https://doi.org/10.3390/ma14051174
Chicago/Turabian StyleZhang, Xuemei, and Inge Hoff. 2021. "Comparative Study of Thermal-Oxidative Aging and Salt Solution Aging on Bitumen Performance" Materials 14, no. 5: 1174. https://doi.org/10.3390/ma14051174
APA StyleZhang, X., & Hoff, I. (2021). Comparative Study of Thermal-Oxidative Aging and Salt Solution Aging on Bitumen Performance. Materials, 14(5), 1174. https://doi.org/10.3390/ma14051174