Investigating the Effectiveness of Nano-Montmorillonite on Asphalt Binder from Rheological, Thermodynamics, and Chemical Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Multiple Stress Creep Recovery Test
2.4. Sessile Drop Method Test
2.5. Fourier Transform Infrared Spectroscopy Test
2.6. Gel Permeation Chromatography Test
3. Results
3.1. Rheological Performance Analysis
3.1.1. Termination Strain of MSCR Test
3.1.2. Deformation Recovery Percentage (R%)
3.1.3. Nonrecoverable Creep Compliance (Jnr)
3.2. Surface Free Energy Analysis
3.2.1. Surface Free Energy and Its Components
3.2.2. Cohesion and Adhesion Work
3.3. Chemical Composition Analysis
3.3.1. Characteristic Functional Group
3.3.2. Molecular Weight Distribution
4. Conclusions
- With the increase of MMT dosing, the value of elastic recovery of asphalt binder obtained a gradual increase, indicating that the interlayer structure formed by the montmorillonite layer and the asphalt binder plays a coordinating role in the force and deformation of the binder structure. However, the value of irrecoverable creep flexibility decreases with the increase of dosing, indicating that it can improve the high-temperature resistance to plastic deformation of asphalt, which in turn improves the high-temperature performance of the asphalt binder.
- MMT enhances the surface free energy of the asphalt binder–aggregate system, which mainly increases the component of dispersion fraction. The lamellar structure enhances the interaction between polymer chains and clay layers; therefore, its cohesive power on both base asphalt and SBS asphalt is significantly enhanced. In addition, the experimental results demonstrated the best adhesion ability between the MMT-doped asphalt binder and sandstone.
- The analysis of FTIR results showed that the interaction between MMT and asphalt is physical, and there is no chemical reaction. There is a good dispersion and compatibility between them because the asphalt shows a strong adsorption to the organic MMT. Absorption peaks generated by stretching or bending vibrations in the crystal structure of MMT can be observed.
- The chemical composition of the asphalt binder is influenced by the amount of MMT, which increases the LMS content while decreasing the SMS content in the asphalt. The laminar structure restricts the movement of small molecules in the binder and causes the large molecular components to aggregate, enhancing the overall intermolecular forces, which in turn improves the stability of the cross-linked structure in the SBS asphalt binder.
- It has been demonstrated that MMT can enhance the high-temperature physical properties of asphalt binders and its application in hot areas can help to improve the service quality of pavements and extend the service life of roads. However, the question of whether the application of nanoscale materials to asphalt pavements has any health effects on people needs to be further investigated.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Surface free energy | |
Dispersion component of surface energy | |
Polar component of surface energy | |
Surface energy at the solid-liquid interface | |
Surface energy of the solid | |
Surface free energy of the liquid | |
Contact angle | |
Cohesive work of the asphalt binder | |
Adhesive work between asphalt and mineral material in dry condition | |
R | Deformation recovery percentage |
Rdiff | Creep recovery rate difference ratio |
Peak strain in each loading cycle | |
Residual strain in each loading cycle | |
Initial strain in each loading cycle | |
Jnr | Nonrecoverable creep compliance |
Jdiff | Difference ratio of non-recoverable creep compliance |
σ | Applied stress level |
LMS | Large molecular size |
MMS | Medium molecular size |
SMS | Small molecular size |
Mw | Weight-average molecular weight |
Mn | Number-average molecular weight |
D | Dispersion |
References
- Cheng, P.; Li, Y.; Zhang, Z. Effect of phenolic resin on the rheological, chemical, and aging properties of SBR-modified asphalt. Int. J. Pavement Res. Technol. 2020, 14, 421–427. [Google Scholar] [CrossRef]
- Tsantilis, L.; Dalmazzo, D.; Baglieri, O.; Santagata, E. Effect of SBS molecular structure on the rheological properties of ternary nanomodified bituminous binders. Constr. Build. Mater. 2019, 222, 183–192. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, W.; Feng, H.; Cao, K. High and Low Temperature Performance and Fatigue Properties of Silica Fume/SBS Compound Modified Asphalt. Materials 2020, 13, 4446. [Google Scholar] [CrossRef] [PubMed]
- Ge, X. Research on the influence factors of asphalt rubber mixture fatigue performance. In Proceedings of the 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), Chongqing, China, 28–29 May 2016. [Google Scholar]
- Li, X.; Wang, Y.-M.; Wu, Y.-L.; Wang, H.-R.; Chen, M.; Sun, H.-D.; Fan, L. Properties and modification mechanism of asphalt with graphene as modifier—ScienceDirect. Constr. Build. Mater. 2021, 272, 121919. [Google Scholar] [CrossRef]
- Bhat, F.S.; Mir, M.S. A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder. Constr. Build. Mater. 2020, 271, 121499. [Google Scholar] [CrossRef]
- Wang, R.; Yue, M.; Xiong, Y.; Yue, J. Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders. Constr. Build. Mater. 2020, 268, 121189. [Google Scholar] [CrossRef]
- Wu, C.; Li, L.; Wang, W.; Gu, Z. Experimental Characterization of Viscoelastic Behaviors of Nano-TiO2/CaCO3 Modified Asphalt and Asphalt Mixture. Nanomaterials 2021, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ren, Z.; Yu, H.; Wang, D.; Svetlana, S.; Korolev, E.; Gao, Z.; Guo, F. Modification of Asphalt Rubber with Nanoclay towards Enhanced Storage Stability. Materials 2018, 11, 2093. [Google Scholar] [CrossRef] [Green Version]
- Xing, H.; Liang, Y.; Liu, G.; Zhang, Y.; Liu, X.; Fu, W. Organically treating montmorillonite with dual surfactants to modify bitumen. Constr. Build. Mater. 2020, 264, 120705. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Wei, L.; Li, J.; Mao, Z. High- and Low-Temperature Properties of Layered Silicate-Modified Bitumens: View from the Nature of Pristine Layered Silicate. Appl. Sci. 2019, 9, 3563. [Google Scholar]
- Fang, C.; Yu, R.; Zhang, Y.; Hu, J.; Zhang, M.; Mi, X. Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite. Polym. Test. 2012, 31, 276–281. [Google Scholar] [CrossRef]
- Yu, R.E.; Fang, C.Q.; Liu, P.; Liu, X.L.; Li, Y. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl. Clay Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, R.; Yang, Z.; Chu, Y.; Xu, Y.; Zhang, Q. Multiscale Study on the Effect of Nano-Organic Montmorillonite on the Performance of Rubber Asphalt. J. Nanomater. 2018, 2018. [Google Scholar] [CrossRef]
- Polacco, G.; Muscente, A.; Biondi, D.; Santini, S. Effect of composition on the properties of SEBS modified asphalts. Eur. Polym. J. 2006, 42, 1113–1121. [Google Scholar] [CrossRef]
- Zapien-Castillo, S.; Rivera-Armenta, J.L.; Chavez-Cinco, M.Y.; Salazar-Cruz, B.A.; Mendoza-Martinez, A.M. Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite. Constr. Build. Mater. 2016, 106, 349–356. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, Y.; Yu, R.; Liu, X.; Hu, J.; Zhang, M. Effect of organic montmorillonite on the hot storage stability of asphalt modified by waste packaging polyethylene. J. Vinyl Addit. Technol. 2015, 21, 89–93. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Liu, W.; Zhang, D.K.; Wan, C.X. Effect of organic montmorillonite on microstructure and properties of the OMMT/EVA/Asphalt composites. Polym. Compos. 2018, 39, 1959–1966. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Wei, L.; Wu, X.; Cui, X.; Zhang, H.; Lv, W.; Zhang, Q. Study on properties and mechanism of organic montmorillonite modified bitumens: View from the selection of organic reagents. Constr. Build. Mater. 2019, 217, 331–342. [Google Scholar] [CrossRef]
- Akbari, A.; Modarres, A. Fatigue response of HMA containing modified bitumen with nano-clay and nano-alumina and its relationship with surface free energy parameters. Road Mater. Pavement Des. 2020, 21, 1490–1513. [Google Scholar] [CrossRef]
- Ameli, A.; Babagoli, R.; Khabooshani, M.; AliAsgari, R.; Jalali, F. Permanent deformation performance of binders and stone mastic asphalt mixtures modified by SBS/montmorillonite nanocomposite. Constr. Build. Mater. 2020, 239, 13. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, P.; Li, Y. Effect of nano montmorillonite on the multiple self-healing of microcracks in asphalt mixture. Road Mater. Pavement Des. 2020, 1–15. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, C.; Yu, Z. Influence of montmorillonite on ageing resistance of styrene–ethylene/butylene–styrene-modified asphalt. J. Therm. Anal. Calorim. 2018, 133, 1–13. [Google Scholar]
- Zhang, H.L.; Wang, H.C.; Yu, J.Y. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy. J. Microsc. 2011, 242, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Yu, J.Y.; Xue, L.H.; Li, Z.C. Effect of montmorillonite organic modification on microstructures and ultraviolet aging properties of bitumen. J. Microsc. 2011, 244, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.I.; Hengiong, Z.; Jianying, Y.U. Effect of Organo-montmorillonite on the Morphology and Aging Properties of Various Bitumens. J. Wuhan Univ. Technol. (Mater. Sci. Ed.) 2010, 25, 650–655. [Google Scholar]
- Bhasin, A. Development of Methods to Quantify Bitumen-Aggregate Adhesion and Loss of Adhesion Due to Water. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2006. [Google Scholar]
- Kakar, M.R.; Hamzah, M.O.; Akhtar, M.N.; Woodward, D. Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive. J. Clean. Prod. 2016, 112, 2342–2353. [Google Scholar] [CrossRef]
- Shen, J.; Amirkhanian, S.N.; Lee, S.J. HP-GPC Characterization of Rejuvenated Aged CRM Binders. J. Mater. Civ. Eng. 2007, 19, 515–522. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Wang, Q.; Yao, H. Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel 2016, 184, 242–247. [Google Scholar] [CrossRef]
- Ye, Y.; Xu, G.; Lou, L.; Chen, X.; Shi, Y. Evolution of Rheological Behaviors of Styrene-Butadiene-Styrene/Crumb Rubber Composite Modified Bitumen after Different Long-Term Aging Processes. Materials 2019, 12, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowkes, M.F. Attractive Forces at Interfaces. Ind. Eng. Chem. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Good, R.J. Contact Angle, Wetting, and Adhesion: A Critical Review. J. Adhes. Sci. Technol. 1992, 6, 1269–1302. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884–891. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Santagata, E.; Baglieri, O.; Miglietta, F.; Tsantilis, L.; Riviera, P.P. Impact of nanosized additives on the fatigue damage behaviour of asphalt mixtures. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2738–2746. [Google Scholar] [CrossRef]
- Ren, Z.; Zhu, Y.; Wu, Q.; Zhu, M.; Yu, J. Enhanced Storage Stability of Different Polymer Modified Asphalt Binders through Nano-Montmorillonite Modification. Nanomaterials 2020, 10, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.; Li, Y.; Zhang, Z. Effect of Phenolic Resin on the Rheological and Morphological Characteristics of Styrene-Butadiene Rubber-Modified Asphalt. Materials 2020, 13, 5836. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Deng, M.; Cao, X.; Yu, M.; Tang, B. Investigation of mixing effect and molecular aggregation between virgin and aged asphalt. Constr. Build. Mater. 2019, 221, 301–307. [Google Scholar] [CrossRef]
Technical Parameters | Values | Methods | |
---|---|---|---|
Base Asphalt Binder | SBS Asphalt Binder | ||
Penetration (25 °C, 100 g, 5 s) (0.1 mm) | 88.6 | 72.5 | JTG E20-2011 T0604 |
Ductility (5 °C, 5 cm/min) (mm) | 9.5 | 28.0 | JTG E20-2011 T0605 |
Softening point (°C) | 49.0 | 66.5 | JTG E20-2011 T0606 |
Viscosity (135 °C) (Pa·s) | 0.58 | 1.62 | JTG E20-2011 T0625 |
Physical Properties | MMT |
---|---|
MMT content (%) | 96–98% |
Apparent density (g cm−3) | 0.25–0.40 |
Water content (%) | <5% |
Radius-thickness ratio | 200 |
Average wafer thickness (nm) | 15 |
Main Chemical Composition | Limestone | Sandstone | Granite |
---|---|---|---|
SiO2 (%) | 4.2 | 34.72 | 67.4 |
Al2O3 (%) | 2.8 | 5.39 | 16.8 |
Fe2O3 (%) | 0.6 | 2.67 | 1.6 |
MgO (%) | 1.2 | 6.69 | 2.1 |
CaO (%) | 54.5 | 16.15 | 3.2 |
Name of Samples | Composition |
---|---|
B0 | Base asphalt |
B1 | Base asphalt with 1% MMT |
B3 | Base asphalt with 3% MMT |
B5 | Base asphalt with 5% MMT |
S0 | SBS modified asphalt |
S1 | SBS modified asphalt with 1% MMT |
S3 | SBS modified asphalt with 3% MMT |
S5 | SBS modified asphalt with 5% MMT |
Sample Type | Surface Free Energy Components (mJ/m2) | |||
---|---|---|---|---|
Detection liquid | Deionized Water | 20.6 | 52.2 | 72.8 |
Formamide | 38.9 | 19.6 | 58.5 | |
Glycerol | 34.0 | 30.0 | 64.0 | |
Aggregate | Limestone | 26.3 | 13.9 | 40.2 |
Sandstone | 27.4 | 18.1 | 45.5 | |
Basalt | 23.7 | 16.1 | 39.8 |
Binder Type | Final Strain | R0.1 | R3.2 | J0.1 | J3.2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Avg. | CV | Avg. | CV | Avg. | CV | Avg. | CV | Avg. | CV | |
B0 | 11,670.12 | 0.73 | 4.81 | 0.13 | 1.21 | 0.19 | 0.45 | 0.34 | 0.54 | 0.36 |
B1 | 9233.18 | 0.47 | 5.32 | 0.36 | 1.78 | 0.21 | 0.39 | 0.36 | 0.42 | 0.21 |
B3 | 5549.31 | 0.28 | 7.78 | 0.28 | 4.61 | 0.14 | 0.31 | 0.28 | 0.41 | 0.12 |
B5 | 4786.26 | 0.36 | 12.33 | 0.58 | 8.14 | 0.61 | 0.26 | 0.18 | 0.34 | 0.19 |
S0 | 5426.15 | 0.67 | 21.84 | 0.25 | 12.40 | 0.33 | 0.15 | 0.25 | 0.18 | 0.24 |
S1 | 4359.28 | 0.22 | 24.57 | 0.47 | 15.23 | 0.28 | 0.12 | 0.13 | 0.16 | 0.38 |
S3 | 2542.56 | 0.49 | 34.26 | 0.33 | 20.76 | 0.29 | 0.08 | 0.21 | 0.10 | 0.27 |
S5 | 2159.57 | 0.12 | 36.13 | 0.55 | 21.27 | 0.39 | 0.05 | 0.19 | 0.08 | 0.19 |
Binder Type | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | (mJ/m2) | ||
---|---|---|---|---|---|---|---|
Limestone | Sandstone | Basalt | |||||
B0 | 9.2 | 2.05 | 11.25 | 22.5 | 41.82 | 43.97 | 41.04 |
B1 | 10 | 1.89 | 11.89 | 23.78 | 42.72 | 44.84 | 41.85 |
B3 | 13.25 | 1.91 | 15.16 | 30.32 | 47.68 | 49.91 | 46.56 |
B5 | 15.58 | 1.75 | 17.33 | 34.66 | 50.39 | 52.62 | 49.08 |
S0 | 15.79 | 1.29 | 17.08 | 34.16 | 49.26 | 51.31 | 47.84 |
S1 | 16.58 | 1.31 | 17.89 | 35.78 | 50.33 | 52.41 | 48.87 |
S3 | 18.44 | 1.20 | 19.64 | 39.28 | 52.25 | 54.32 | 50.65 |
S5 | 19.27 | 1.35 | 20.62 | 41.24 | 53.72 | 55.89 | 52.11 |
Binder Type | LMS (%) | MMS (%) | SMS (%) | Mw | Mn | D |
---|---|---|---|---|---|---|
B0 | 14.4 | 57.1 | 28.5 | 3879 | 1610 | 2.41 |
B1 | 15.1 | 57.6 | 27.3 | 3895 | 1617 | 2.41 |
B3 | 16.6 | 56.9 | 26.5 | 3946 | 1617 | 2.44 |
B5 | 17.9 | 57.2 | 24.9 | 4018 | 1620 | 2.48 |
S0 | 19.2 | 59.3 | 21.5 | 4165 | 1698 | 2.45 |
S1 | 20.8 | 58.2 | 21.0 | 4212 | 1712 | 2.46 |
S3 | 23.8 | 56.4 | 19.8 | 4288 | 1736 | 2.47 |
S5 | 25.2 | 56.6 | 18.2 | 4351 | 1740 | 2.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, P.; Zhang, Z.; Yang, Z.; Xu, J.; Li, Y. Investigating the Effectiveness of Nano-Montmorillonite on Asphalt Binder from Rheological, Thermodynamics, and Chemical Perspectives. Materials 2021, 14, 1433. https://doi.org/10.3390/ma14061433
Cheng P, Zhang Z, Yang Z, Xu J, Li Y. Investigating the Effectiveness of Nano-Montmorillonite on Asphalt Binder from Rheological, Thermodynamics, and Chemical Perspectives. Materials. 2021; 14(6):1433. https://doi.org/10.3390/ma14061433
Chicago/Turabian StyleCheng, Peifeng, Zhanming Zhang, Zonghao Yang, Jin Xu, and Yiming Li. 2021. "Investigating the Effectiveness of Nano-Montmorillonite on Asphalt Binder from Rheological, Thermodynamics, and Chemical Perspectives" Materials 14, no. 6: 1433. https://doi.org/10.3390/ma14061433
APA StyleCheng, P., Zhang, Z., Yang, Z., Xu, J., & Li, Y. (2021). Investigating the Effectiveness of Nano-Montmorillonite on Asphalt Binder from Rheological, Thermodynamics, and Chemical Perspectives. Materials, 14(6), 1433. https://doi.org/10.3390/ma14061433