Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Zirconia Specimens
2.2. Preparation of Fluorapatite Glass-Ceramic Powder
2.3. Surface Treatments
2.4. Zirconia Surface Characterisation
2.4.1. Scanning Electron Microscope (SEM)
2.4.2. Surface Roughness
2.4.3. X-ray Diffraction (XRD) Analysis
2.5. Preparation of Feldspathic Porcelain
2.6. Preparation of Lithium Disilicate Porcelain
2.7. Bonding Procedure
- a-
- For the Tetric group, zirconia surfaces were rubbed with 10-MDP Monobond Plus for 1 min and air-dried for 5 s before coated with Adhese Universal using microbrush and light-cured for 10 s using a LED curing light (Elipar S10, 3M ESPE) with an output of irradiance of 1200 mW/cm2. Custom-made silicone mould with a 5 mm diameter and 3 mm thickness was then placed over the bonding area. The mould was then bulk-filled by Tetric EvoCeram Bulk Fill using a plastic filling instrument before it was light-cured for 20 s.
- b-
- For VM 13 and e.max CAD groups, exposed zirconia was treated with 10-MDP Monobond Plus and left for 60 s and then air-dried for 5 s. VM13 and IPS e.max CAD specimens were etched with (HF 9% and HF 5.5%, respectively) for 1 min, water-rinsed, and air-dried before they were treated with Monobond Plus primer for 1 min. Multilink Automix resin cement was extruded over the bonding area using a double syringe through an auto-mixing tip.
2.8. Shear Bond Strength (SBS) Test
- (A)
- adhesive failure: Failure between the resin composite and zirconia surface;
- (B)
- mixed failure: Combined adhesive and cohesive failure in resin composite specimen.
2.9. Statistical Analysis
3. Results
3.1. SEM
3.2. Surface Roughness
3.3. XRD
3.4. Shear Bond Strength
3.5. Modes of Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seabra, B.; Arantes-Oliveira, S.; Portugal, J. Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. J. Prosthet. Dent. 2014, 112, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Tokar, E.; Polat, S.; Ozturk, C. Repair bond strength of composite to Er, Cr: YSGG laser irradiated zirconia and porcelain surfaces. Biomed. J. 2019, 42, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bona ADella Kelly, J.R. The Clinical Success Of All-Ceramic Restorations. J. Am. Dent. Assoc. 2008, 139, S8–S13. [Google Scholar] [CrossRef] [Green Version]
- Sornsuwan, T.; Swain, M.V. Influence of occlusal geometry on ceramic crown fracture; role of cusp angle and fissure radius. J. Mech. Behav. Biomed. Mater. 2011, 4, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Subaşi, M.G.; Demir, N.; Kara, Ö.; Nilgun Ozturk, A.; Özel, F. Mechanical properties of zirconia after different surface treatments and repeated firings. J. Adv. Prosthodont. 2014, 6, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Sailer, I.; Pjetursson, B.E.; Zwahlen, M.; Hämmerle, C.H.F. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin. Oral Implants Res. 2007, 18, 86–96. [Google Scholar] [CrossRef]
- Heintze, S.D.; Rousson, V. Survival of zirconia- and metal-supported fixed dental prostheses: A systematic review. Int. J. Prosthodont. 2010, 23, 493–502. [Google Scholar]
- Lee, S.J.; Cheong, C.W.; Wright, R.F.; Chang, B.M. Bond strength of the porcelain repair system to all-ceramic copings and porcelain. J. Prosthodont. 2014, 23, 112–116. [Google Scholar] [CrossRef]
- Özcan, M. Evaluation of alternative intra-oral repair techniques for fractured ceramic-fused-to-metal restorations. J. Oral Rehabil. 2003, 30, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Han, I.H.; Kang, D.W.; Chung, C.H.; Choe, H.C.; Son, M.K. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia. J. Adv. Prosthodont. 2013, 5, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Tsoi, J.K.-H.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Chae, S.Y.; Lee, Y.; Han, G.J.; Cho, B.H. Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic. Oper. Dent. 2015, 40, 55–62. [Google Scholar] [CrossRef]
- Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are we now? Dent. Mater. 2011, 27, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Curtis, A.R.; Wright, A.J.; Fleming, G.J.P. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J. Dent. 2006, 34, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Akyil, M.S.; Uzun, I.H.; Bayindir, F. Bond strength of resin cement to yttrium-stabilized tetragonal zirconia ceramic treated with air abrasion, silica coating, and laser irradiation. Photomed. Laser Surg. 2010, 28, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Usumez, A.; Hamdemirci, N.; Koroglu, B.Y.; Simsek, I.; Parlar, O.; Sari, T. Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med. Sci. 2013, 28, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Wandscher, V.F.; Fraga, S.; Pozzobon, J.L.; Soares, F.Z.M.; Foletto, E.L.; May, L.G.; Valandro, L.F. Tribochemical glass ceramic coating as a new approach for resin adhesion to zirconia. J. Adhes. Dent. 2016, 18, 435–440. [Google Scholar]
- Ishibe, M.; Raigrodski, A.J.; Flinn, B.D.; Chung, K.-H.; Spiekerman, C.; Winter, R.R. Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores. J. Prosthet. Dent. 2011, 106, 29–37. [Google Scholar] [CrossRef]
- Inokoshi, M.; Kameyama, A.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Durable bonding to mechanically and/or chemically pre-treated dental zirconia. J. Dent. 2013, 41, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Takagaki, T.; Takahashi, A.; Tagami, J. The role of functional phosphoric acid ester monomers in the surface treatment of yttria-stabilized tetragonal zirconia polycrystals. Dent. Mater. J. 2017, 36, 190–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarano, A.; Lorusso, F.; Postiglione, F.; Mastrangelo, F.; Petrini, M. Photobiomodulation Enhances the Healing of Postextraction Alveolar Sockets: A Randomized Clinical Trial With Histomorphometric Analysis and Immunohistochemistry. J. Oral Maxillofac. Surg. 2021, 79, 57.e1–57.e12. [Google Scholar] [CrossRef]
- Sadat Madani, A.; Astaneh, P.A.; Shahabi, S.; Nakhaei, M.R.; Bagheri, G.H.; Chiniforush, N. Influence of different power outputs of intraoral Nd: YAG laser on shear bond strength of a resin cement to nickel-chromium dental alloy. Lasers Med. Sci. 2013, 28, 229–234. [Google Scholar] [CrossRef]
- Peumans, M.; Valjakova, E.B.; De Munck, J.; Mishevska, C.B.; Van Meerbeek, B. Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials. J. Adhes. Dent. 2016, 18, 289–302. [Google Scholar] [PubMed] [Green Version]
- Garvie, R.; Nicholson, P. Phase Analysis in Zirconia Systems. J. Am. Ceram. Soc. 1972, 55, 303–305. [Google Scholar] [CrossRef]
- Toraya, H.; Yoshimura, M.; Somiya, S. Quantitative Analysis of Monoclinic-Stabilized Cubic ZrO 2 Systems by X-Ray Diffraction. J. Am. Ceram. Soc. 1984, 67, C-183–C-184. [Google Scholar]
- Pandurangan, K.K.; Veeraiyan, D.N.; Nesappan, T. In vitro evaluation of fracture resistance and cyclic fatigue resistance of computer-aided design-on and hand-layered zirconia crowns following cementation on epoxy dies. J. Indian Prosthodont. Soc. 2020, 20, 90–96. [Google Scholar] [CrossRef]
- Shafiei, F.; Fattah, Z.; Kiomarsi, N.; Dashti, M.H. Influence of Primers and Additional Resin Layer on Zirconia Repair Bond Strength. J. Prosthodont. 2019, 28, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Meirelles, P.D.; Rocha, L.S.; Pecho, O.E.; Della Bona, A.; Benetti, P. Intraoral repair of a chipped porcelain-zirconia restoration. J. Esthet. Restor. Dent. 2020, 32, 444–450. [Google Scholar] [CrossRef]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). In Dental Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 31, pp. 603–623. [Google Scholar]
- Pjetursson, B.E.; Sailer, I.; Makarov, N.A.; Zwahlen, M.; Thoma, D.S. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. In Dental Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 31, pp. 624–639. [Google Scholar]
- Teichmann, M.; Wienert, A.L.; Rückbeil, M.; Weber, V.; Wolfart, S.; Edelhoff, D. Ten-year survival and chipping rates and clinical quality grading of zirconia-based fixed dental prostheses. Clin. Oral Investig. 2018, 22, 2905–2915. [Google Scholar] [CrossRef]
- Cavalcanti, A.N.; Pilecki, P.; Foxton, R.M.; Watson, T.F.; Oliveira, M.T.; Gianinni, M.; Marchi, G.M. Evaluation of the Surface Roughness and Morphologic Features of Y-TZP Ceramics after Different Surface Treatments. Photomed. Laser Surg. 2009, 27, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Ergun Kunt, G.; Duran, I. Effects of laser treatments on surface roughness of zirconium oxide ceramics. BMC Oral Health 2018, 18, 222. [Google Scholar] [CrossRef]
- Subaşı, M.G.; İnan, Ö. Evaluation of the topographical surface changes and roughness of zirconia after different surface treatments. Lasers Med. Sci. 2012, 27, 735–742. [Google Scholar] [CrossRef]
- Tonietto, L.; Gonzaga, L.; Veronez, M.R.; de Kazmierczak, C.S.; Arnold, D.C.M.; da Costa, C.A. New Method for Evaluating Surface Roughness Parameters Acquired by Laser Scanning. Sci. Rep. 2019, 9, 15038. [Google Scholar] [CrossRef] [Green Version]
- Karakoca, S.; Yılmaz, H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y-TZP ceramics. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91B, 930–937. [Google Scholar] [CrossRef] [PubMed]
- May, M.M.; Marchionatti, A.M.E.; Valandro, L.F.; Foletto, E.L.; Dorneles, L.S.; May, L.G. Y-TZP surface treatments and their effects on the bond strength to resin cement. Braz. J. Oral Sci. 2019, 18, e190918. [Google Scholar] [CrossRef]
- Belli, R.; Wendler, M.; de Ligny, D.; Cicconi, M.R.; Petschelt, A.; Peterlik, H.; Lohbauer, U. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent. Mater. 2017, 33, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Inokoshi, M.; Shimizu, H.; Nozaki, K.; Takagaki, T.; Yoshihara, K.; Nagaoka, N.; Zahng, F.; Vleugels, J.; Meerbeek, B.V.; Minakuchi, S. Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia. Dent. Mater. 2018, 34, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Kitano, Y.; Mori, Y.; Ishitani, A.; Masaki, T. Rhombohedral Phase in Y2O3-Partially-Stabilized ZrO2. J. Am. Ceram. Soc. 1988, 71, C-34–C-36. [Google Scholar] [CrossRef]
- Cheng, Y.; Thompson, D. The transformability of tetragonal ZrO2 in some glass systems. J. Mater. Sci. Lett. 1990, 9, 24–27. [Google Scholar] [CrossRef]
- Siarampi, E.; Kontonasaki, E.; Papadopoulou, L.; Kantiranis, N.; Zorba, T.; Paraskevopoulos, K.M.; Koidios, P. Flexural strength and the probability of failure of cold isostatic pressed zirconia core ceramics. J. Prosthet. Dent. 2012, 108, 84–95. [Google Scholar] [CrossRef]
- Juntavee, N.; Attashu, S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J. Clin. Exp. Dent. 2018, 10, e794–e804. [Google Scholar] [CrossRef]
- Pereira, G.K.R.; Venturini, A.B.; Silvestri, T.; Dapieve, K.S.; Montagner, A.F.; Soares, F.Z.M.; Valandro, L.F. Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. J. Mech. Behav. Biomed. Mater. 2015, 55, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Oglakci, B.; Arhun, N. The shear bond strength of repaired high-viscosity bulk-fill resin composites with different adhesive systems and resin composite types. J. Adhes. Sci. Technol. 2019, 33, 1584–1597. [Google Scholar] [CrossRef]
- Fischer, J.; Grohmann, P.; Stawarczyk, B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent. Mater. J. 2008, 27, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Derand, T.; Molin, M.; Kvam, K. Bond strength of composite luting cement to zirconia ceramic surfaces. Dent. Mater. 2005, 21, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Komine, F.; Kubochi, K.; Yagawa, S. Bond strength of CAD/CAM-manufactured composite resin and ceramic veneers to a zirconia framework. J. Oral Sci. 2019, 61, 327–334. [Google Scholar] [CrossRef]
- Aboushelib, M.N.; Kleverlaan, C.J.; Feilzer, A.J. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent. Mater. 2006, 22, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Sudsangiam, S.; van Noort, R. Do dentin bond strength tests serve a useful purpose? J. Adhes. Dent. 1999, 1, 57–67. [Google Scholar]
- Valandro, L.F.; Özcan, M.; Amaral, R.; Vanderlei, A.; Bottino, M.A. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic: Microtensile versus shear test. Dent. Mater. J. 2008, 27, 849–855. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. Dental Materials-Guidance on Testing of Adhesion to Tooth Structure; International Organization for Standardization: Geneva, Switzerland, 1994; Volume 11405 (E). [Google Scholar]
- Yildirim, B.; Kümbüloğlu, Ö.; Saraçoğlu, A.; Al-Haj Husain, N.; Özcan, M. An investigation of atomic force microscopy, surface topography and adhesion of luting cements to zirconia: Effect of silica coating, zirconia primer and laser. J. Adhes. Sci. Technol. 2019, 33, 2047–2060. [Google Scholar] [CrossRef]
- Hara, A.T.; Pimenta, L.A.F.; Rodrigues, A.L. Influence of cross-head speed on resin-dentin shear bond strength. Dent. Mater. 2001, 17, 165–169. [Google Scholar] [CrossRef]
- Massi Paschoalino, V.; Juste Paschoalino, B.; Özcan, M.; Luis Almeida de Carvalho, R.; de Carvalho, R.F.; Al-Haj Husain, N.; Leite, F.P. Effect of different air-abrasion protocols on topography, surface wettability and adhesion of MDP monomer-based resin cement to zirconia. J. Adhes. Sci. Technol. 2019, 33, 1948–1958. [Google Scholar] [CrossRef]
- Özcan, M.; Vallittu, P.K. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent. Mater. 2003, 19, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning. Dent. Mater. 2006, 22, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, M.; Valandro, L.F.; Pereira, S.M.; Amaral, R.; Bottino, M.A.; Pekkan, G. Effect of surface conditioning modalities on the repair bond strength of resin composite to the zirconia core/veneering ceramic complex. J. Adhes. Dent. 2013, 15, 207–210. [Google Scholar]
- Hallmann, L.; Ulmer, P.; Reusser, E.; Hämmerle, C.H.F. Effect of blasting pressure, abrasive particle size and grade on phase transformation and morphological change of dental zirconia surface. Surf. Coat. Technol. 2012, 206, 4293–4302. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R.; Rekow, E.D.; Thompson, V.P. Effect of sandblasting on the long-term performance of dental ceramics. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 381–386. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, T.; Liu, R.; Feng, X.; Chen, A.; Shao, L. An in vitro evaluation of the zirconia surface treatment by mesoporous zirconia coating on its bonding to resin cement. Biomed. Mater. Eng. 2014, 24, 2109–2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naenni, N.; Bindl, A.; Sax, C.; Hämmerle, C.; Sailer, I. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results. J. Dent. 2015, 43, 1365–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altan, B.; Cinar, S.; Tuncelli, B. Evaluation of shear bond strength of zirconia-based monolithic CAD-CAM materials to resin cement after different surface treatments. Niger. J. Clin. Pract. 2019, 22, 1475–1482. [Google Scholar] [CrossRef]
- Atsu, S.S.; Kilicarslan, M.A.; Kucukesmen, H.C.; Aka, P.S. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J. Prosthet. Dent. 2006, 95, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Heikkinen, T.; Özcan, M.; Lassila, L.V.J.; Vallittu, P.K. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent. Mater. 2006, 22, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.H.; Huh, Y.H.; Ko, K.H.; Park, C.J.; Cho, L.R. Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent. J. Adv. Prosthodont. 2018, 10, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Attia, A.; Lehmann, F.; Kern, M. Influence of surface conditioning and cleaning methods on resin bonding to zirconia ceramic. Dent. Mater. 2011, 27, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.; Kern, M. Long-term resin bonding to zirconia ceramic with a new universal primer. J. Prosthet. Dent. 2011, 106, 319–327. [Google Scholar] [CrossRef]
- Yi, Y.A.; Ahn, J.S.; Park, Y.J.; Jun, S.H.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. The effect of sandblasting and different primers on shear bond strength between yttria-tetragonal zirconia polycrystal ceramic and a self-adhesive resin cement. Oper. Dent. 2015, 40, 63–71. [Google Scholar] [CrossRef]
- Yilmaz-Savas, T.; Demir, N.; Ozturk, A.N.; Kilic, H.S. Effect of Different Surface Treatments on the Bond Strength of Lithium Disilicate Ceramic to the Zirconia Core. Photomed. Laser Surg. 2016, 34, 236–243. [Google Scholar] [CrossRef]
- Yilmaz Savas, T.; Aykent, F. Effect of Veneering Techniques on Shear and Microtensile Bond Strengths of Zirconia-Based All-Ceramic Systems. J. Adhes. Dent. 2017, 19, 507–515. [Google Scholar]
- Renda, J.J.; Harding, A.B.; Bailey, C.W.; Guillory, V.L.; Vandewalle, K.S. Microtensile bond strength of lithium disilicate to Zirconia with the CAD-on technique. J. Prosthodont. 2015, 24, 188–193. [Google Scholar] [CrossRef]
- Zarone, F.; Ferrari, M.; Mangano, F.G.; Leone, R.; Sorrentino, R. “Digitally Oriented Materials”: Focus on Lithium Disilicate Ceramics. Int. J. Dent. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Kuriyama, S.; Terui, Y.; Higuchi, D.; Goto, D.; Hotta, Y.; Manabe, A.; Miyazaki, T. Novel fabrication method for zirconia restorations: Bonding strength ofmachinable ceramic to zirconia with resin cements. Dent. Mater. J. 2011, 30, 419–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motro, P.F.K.; Kursoglu, P.; Kazazoglu, E. Effects of different surface treatments on stainability of ceramics. J. Prosthet. Dent. 2012, 108, 231–237. [Google Scholar] [CrossRef]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Barizon, K.T.L.; Bergeron, C.; Vargas, M.A.; Qian, F.; Cobb, D.S.; Gratton, D.G.; Geraldeli, S. Ceramic materials for porcelain veneers: Part II. Effect of material, shade, and thickness on translucency. J. Prosthet. Dent. 2014, 112, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, A.D.; Della Bona, A. The effect of a coupling medium on color and translucency of CAD-CAM ceramics. J. Dent. 2013, 41, e18–e23. [Google Scholar] [CrossRef] [Green Version]
Mean (SD) µm | ||||||||
---|---|---|---|---|---|---|---|---|
Groups | Ra | 95% CI | Rp | 95% CI | Rv | 95% CI | Rz | 95% CI |
Group A (CoJet) | 0.29 (0.02) A | 0.27–0.3 | 0.66 (0.07) A | 0.59–0.72 | 0.92 (0.05) B | 0.87–0.96 | 2.75 (0.45) B | 2.33–3.17 |
Group B (FGC) | 0.31 (0.05) A | 0.27–0.36 | 1.08 (0.12) B | 0.97–1.19 | 0.51 (0.11) A | 0.41–0.61 | 3.28 (0.37) B | 2.93–3.62 |
Group C (FGC + Nd: YAG) | 2.41 (0.38) B | 2.06–2.77 | 5.66 (0.6) C | 5.09–6.21 | 3.58 (0.25) C | 3.35–3.82 | 14.82 (1.85) C | 13.11–16.53 |
Group D (Control) | 0.03 (0.01) A | 0.01–0.04 | 0.24 (0.01) A | 0.23–0.25 | 0.30 (0.02) A | 0.28–0.32 | 0.36 (0.09) A | 0.28–0.44 |
Mean SBS MPa (SD) | ||||||||
---|---|---|---|---|---|---|---|---|
Groups | CoJet | 95% CI | FGC | 95% CI | FGC + Nd: YAG | 95% CI | Control | 95% CI |
Tetric EvoCeram Bulk Fill | 19.3 (0.8) Aa | 18.72–19.91 | 21.5 (2.1) Aa | 20–22.95 | 19.1 (1.2) Aa | 18.19–19.97 | 15.5 (1.5) Ab | 14.42–16.56 |
VITA VM 13 | 14.2 (2.1) Bb | 12.69–15.66 | 20.3 (2.2) Aa | 18.72–21.89 | 20.3 (1.9) Aa | 18.92–21.58 | 13.3 (2.1) Ab | 11.76–14.8 |
IPS e.max CAD | 25.8 (2.40) Cb | 24.11–27.56 | 36.4 (2.3) Ba | 34.76–38.09 | 35 (2.2) Ba | 33.39–36.5 | 22.7 (1.5) Bc | 20.63–23.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elraggal, A.; Silikas, N. Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia. Materials 2021, 14, 1468. https://doi.org/10.3390/ma14061468
Elraggal A, Silikas N. Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia. Materials. 2021; 14(6):1468. https://doi.org/10.3390/ma14061468
Chicago/Turabian StyleElraggal, Alaaeldin, and Nikolaos Silikas. 2021. "Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia" Materials 14, no. 6: 1468. https://doi.org/10.3390/ma14061468
APA StyleElraggal, A., & Silikas, N. (2021). Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia. Materials, 14(6), 1468. https://doi.org/10.3390/ma14061468