Hydrogels in Hand Sanitizers
Abstract
:1. Introduction
2. Bacteria vs. Viruses
3. Handrub Sanitizers
3.1. Alcohol-Free Handrub Sanitisers
3.2. Alcohol-Based Handrub Sanitisers
- Ethylic alcohol not less than 94.9% (v/v) ethanol, produced by fermentation and distillation processes or by synthetic processes only if it respects USP or FCC standards (as regards impurities, such as methanol).
- Isopropyl alcohol (IPA) according to United States Pharmacopeia (USP grade).
4. Sanitizing Hydrogels: Properties and Characterization
5. Natural and Synthetic Polymers in Sanitizing Hydrogels
5.1. Carbomers
- Inorganic bases, such as NaOH and KOH, specifically for hydro-alcoholic mixtures with a max content of 20% ethanol.
- Triethanolamine is the most suitable neutralizing agent for formulations containing up to 50 to 60% ethanol.
5.2. Cellulose Derivatives
5.2.1. Hydroxyethyl Cellulose (HEC)
5.2.2. Sodium Carboxymethyl Cellulose (CMC)
5.2.3. Hydroxypropyl Methylcellulose (HPMC)
6. Other Excipients in Hand Sanitizers
7. International Handrub Sanitizers Regulation
7.1. US Regulation
7.2. Europe Legal Framework
8. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Carter, S.J. Aseptic Technique. Cooperand Gunn’s Dispensing for Pharmaceutical Students, 12th ed.; CBS Publishers and Distributors Pvt Ltd.: Delhi, India, 2000; pp. 494–540. [Google Scholar]
- Pickering, A.J.; Davis, J.; Boehm, A.B. Efficacy of Alcohol-Based Hand Sanitizer on Hands Soiled with Dirt and Cooking Oil. J Water Health 2011, 9, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Hübner, N.-O.; Hübner, C.; Wodny, M.; Kampf, G.; Kramer, A. Effectiveness of alcohol-based hand disinfectants in a public administration: Impact on health and work performance related to acute respiratory symptoms and diarrhoea. BMC Infect. Dis. 2010, 10, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golin, A.P.; Choi, D.; Ghahary, A. Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses. Am. J. Infect. Control 2020, 48, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Madan, K.; Prashar, N.; Thakral, S. Comparative evaluation of efficacy of alcoholic vs. nonalcoholic hand san-itizers. Int. J. Life Sci. Biotechnol. Pharm. Res. 2012, 1, 173–177. [Google Scholar]
- Gold, N.A.; Avva, U. Alcohol Sanitizer; StatPearls Publishing: St. Petersburg, FL, USA, 2018. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30020626 (accessed on 15 October 2020).
- Centers for Disease Control and Prevention (CDC): Hand Hygiene Recommendations. Guidance for Healthcare Providers about Hand Hygiene and COVID-19. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html (accessed on 3 November 2020).
- Oughton, M.T.; Loo, V.G.; Dendukuri, N.; Fenn, S.; Libman, M.D. Hand Hygiene with Soap and Water Is Superior to Alcohol Rub and Antiseptic Wipes for Removal ofClostridium difficile. Infect. Control Hosp. Epidemiol. 2009, 30, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Policy for Temporary Compounding of Certain Alcohol-Based Hand Sanitizer Products During the Public Health Emergency. Immediately in Effect Guidance for Industry. FDA, March 2020, updated February 10, 2021. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-temporary-policy-preparation-certain-alcohol-based-hand-sanitizer-products-during (accessed on 1 March 2021).
- Simonne, A. Hand Hygiene and Hand Sanitizers. EDIS 2019, 2005, 1–4. Available online: https://journals.flvc.org/edis/article/view/114836 (accessed on 25 October 2020).
- Todd, E.C.D.; Michaels, B.S.; Holahm, J.; Smith, D.; Greig, J.D.; Bartleson, C.A. Outbreaks Where Food Workers Have Been Implicated in the Spread of Foodborne Disease. Part 10. Alcohol-Based Antiseptics for Hand Disinfection and a Comparison of Their Effec-tiveness with Soaps. J. Food Prot. 2010, 73, 2128–2140. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention. Vessel Sanitation Program, OPRP-General Information on Hand Hygiene, Information Sheet. CDC (July 2019). Available online: http://www.cdc.gov/nceh/vsp/cruiselines/hand_hygiene_general.htm (accessed on 14 October 2020).
- Dyer, D.L.; Gerenratch, K.B.; Wadhams, P.S. Testing a New Alcohol-Free Hand Sanitizer to Combat Infection. AORN J. 1998, 68, 239–251. [Google Scholar] [CrossRef]
- Edmonds, S.L.; Macinga, D.R.; Mays-Suko, P.; Duley, C.; Rutter, J.; Jarvis, W.R.; Arbogast, J.W. Comparative efficacy of commercially available alcohol-based hand rubs and World Health Organization-recommended hand rubs: Formulation matters. Am. J. Infect. Control 2012, 40, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Sandora, T.J.; Taveras, E.M.; Shih, M.-C.; Resnick, E.A.; Lee, G.M.; Ross-Degnan, D.; Goldmann, N.A. A Randomized, Controlled Trial of a Multifaceted Intervention Including Alcohol-Based Hand Sanitizer and Hand-Hygiene Education to Reduce Illness Transmission in the Home. Pediatrics 2005, 116, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Boyce, J.; Chartier, Y.; Chraiti, M.; Cookson, B.; Damani, N.; Dharan, S. WHO Guidelines on Hand Hygiene in Health Care. First Global Patient Safety Challenge Clean Care Is Safer Care; World Health Organization: Geneva, Switzerland, 2009; Available online: https://www.who.int/gpsc/5may/tools/who_guidelines-handhygiene_summary.pdf (accessed on 25 October 2020).
- Boyce, J.M.; Pittet, D.; Healthcare Infection Control Practices Advisory Committee; HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for Hand Hygiene in Health-Care Settings. Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Am. J. Infect. Control 2002, 20, S1–S46. [Google Scholar] [CrossRef]
- Seto, W.; Tsang, D.; Yung, R.; Ching, T.; Ng, T.; Ho, M.; Ho, L.; Peiris, J. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 2003, 361, 1519–1520. [Google Scholar] [CrossRef] [Green Version]
- Manocha, S.; Walley, K.R.; Russell, J.A. Severe acute respiratory distress syndrome (SARS): A critical care perspective. Crit. Care Med. 2003, 31, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Fendler, E.; Groziak, P. Efficacy of Alcohol-Based Hand Sanitizers against Fungi and Viruses. Infect. Control Hosp. Epidemiol. 2002, 23, 61–62. [Google Scholar] [CrossRef]
- Gerberding, J.L.; Fleming, M.W.; Snider, D.E., Jr.; Thacker, S.B.; Ward, J.W.; Hewitt, S.M.; Wilson, R.J.; Heilman, M.A.; Doan, Q.M. Morbidity and Mortality Weekly Report. Guideline for Hand Hygiene in Health-Care Settings; Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force; Centers for Disease Control: Atlanta, GA, USA, 2002; Volume 51. [Google Scholar]
- Ionidis, G.; Hübscher, J.; Jack, T.; Becker, B.; Bischoff, B.; Todt, D.; Hodasa, V.; Brill, F.H.H.; Steinmann, E.; Steinmann, J. Development and virucidal activity of a novel alcohol-based hand disinfectant supplemented with urea and citric acid. BMC Infect. Dis. 2016, 16, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.A.; Springthorpe, V.S.; Sattar, S.A.; Rivard, S.; Rahman, M. Potential role of hands in the spread of respiratory viral infections: Studies with human parainfluenza virus 3 and rhinovirus 14. J. Clin. Microbiol. 1991, 29, 2115–2119. [Google Scholar] [CrossRef] [Green Version]
- Sattar, S. Microbicides and the environmental control of nosocomial viral infections. J. Hosp. Infect. 2004, 56, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Rudolph, P.; Kampf, G.; Pittet, D. Limited efficacy of alcohol-based hand gels. Lancet 2002, 359, 1489–1490. [Google Scholar] [CrossRef]
- Dharan, S.; Hugonnet, S.; Sax, H.; Pittet, D. Comparison of Waterless Hand Antisepsis Agents at Short Application Times: Raising the Flag of Concern. Infect. Control Hosp. Epidemiol. 2003, 24, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. How effective are hand antiseptics for the postcontamination treatment of hands when used as recommended? Am. J. Infect. Control 2008, 36, 356–360. [Google Scholar] [CrossRef]
- Erasmus, V.; Daha, T.J.; Brug, H.; Richardus, J.H.; Behrendt, M.D.; Vos, M.C.; Van Beeck, E.F. Systematic Review of Studies on Compliance with Hand Hygiene Guidelines in Hospital Care. Infect. Control Hosp. Epidemiol. 2010, 31, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Guide to Local Production: WHO-Recommended Handrub Formulations; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/guide-to-local-production-who-recommended-handrub-formulations (accessed on 3 November 2020).
- Matthew, Z.U.S. FDA Hand Sanitizer Solutions Explained. Cosmetic and Toiletries May 2020. Available online: https://www.cosmeticsandtoiletries.com/formulating/function/antimicrobial/US-FDA-Hand-Sanitizer-Solutions-Explained-570121061.html (accessed on 3 November 2020).
- McDonnell, G.; Russell, A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Van Assel, A.J.; Te Giel, M.C. Pathogen resistance and adaptation to disinfectants and sanitisers. In Understanding Pathogen Behaviour; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; pp. 484–506. [Google Scholar]
- Bloomfield, S.F.; Arthur, M. Mechanisms of inactivation and resistance of spores to chemical biocides. J. Appl. Bacteriol. 1994, 76, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, C.S.; Tatti, K.M.; Ksiazek, T.G.; Rollin, P.E.; Comer, J.A.; Lee, W.W.; Rota, P.A.; Bankamp, B.; Bellini, W.J.; Zaki, S.R. Ultrastructural Characterization of SARS Coronavirus. Emerg. Infect. Dis. 2004, 10, 320–326. [Google Scholar] [CrossRef]
- Kampf, G.; Kramer, A. Epidemiologic Background of Hand Hygiene and Evaluation of the Most Important Agents for Scrubs and Rubs. Clin. Microbiol. Rev. 2004, 17, 863–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, L. What Is Hand Sanitizer, and Does It Keep Your Hands Germ-Free? Chem. Eng. News 2020, 98, 12. Available online: https://cen.acs.org/business/consumer-products/hand-sanitizer-does-keep-hands/98/i12 (accessed on 15 October 2020).
- Visscher, M.; Davis, J.; Wickett, R. Effect of topical treatments on irritant hand dermatitis in health care workers. Am. J. Infect. Control 2009, 37, 842.e1–842.e11. [Google Scholar] [CrossRef]
- Pittet, D. Compliance with hand disinfection and its impact on hospital-acquired infections. J. Hosp. Infect. 2001, 48, S40–S46. [Google Scholar] [CrossRef]
- Winnefeld, M.; Richard, M.; Drancourt, M.; Grob, J.-J. Skin tolerance and effectiveness of two hand decontamination procedures in everyday hospital use. Br. J. Dermatol. 2000, 143, 546–550. [Google Scholar] [CrossRef]
- Greenaway, R.; Ormandy, K.; Fellows, C.; Hollowood, T. Impact of hand sanitizer format (gel/foam/liquid) and dose amount on its sensory properties and acceptability for improving hand hygiene compliance. J. Hosp. Infect. 2018, 100, 195–201. [Google Scholar] [CrossRef]
- Ale, I.S.; Maibach, H.I. Irritant contact dermatitis. Rev. Environ. Health 2014, 29, 195–206. [Google Scholar] [CrossRef]
- Angelova-Fischer, I.; Dapic, I.; Hoek, A.-K.; Jakasa, I.; Fischer, T.W.; Zillikens, D.; Kezic, S. Skin Barrier Integrity and Natural Moisturising Factor Levels After Cumulative Dermal Exposure to Alkaline Agents in Atopic Dermatitis. Acta Derm. Venereol. 2014, 94, 640–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Show Me the Science—When & How to Use Hand Sanitizer in Community Settings. CDC 2019. Available online: https://www.cdc.gov/handwashing/show-me-the-science-hand-sanitizer.html (accessed on 15 October 2020).
- Hadaway, A. Handwashing: Clean Hands Save Lives. J. Consum. Health Internet 2020, 24, 43–49. [Google Scholar] [CrossRef]
- Chun, C.; Tajarudin, H.; Ismail, N.; Azahari, B.; Makhtar, M.; Yan, L. Bacterial Flagellum versus Carbon Nanotube: A Review Article on the Potential of Bacterial Flagellum as a Sustainable and Green Substance for the Synthesis of Nanotubes. Sustainability 2020, 13, 21. [Google Scholar] [CrossRef]
- Hozhabri, H.; Sparascio, F.P.; Sohrabi, H.; Mousavifar, L.; Roy, R.; Scribano, D.; De Luca, A.; Ambrosi, C.; Sarshar, M. The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. Int. J. Environ. Res. Public Health 2020, 17, 5648. [Google Scholar] [CrossRef] [PubMed]
- Ohlenschlaeger, J.; Friberg, J.; Ramsing, D.; Agner, T. Temperature dependency of skin susceptibility to water and detergents. Acta Derm. Venereol. 1996, 76, 274–276. [Google Scholar] [PubMed]
- Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19); StatPearls Publishing: St. Petersburg, FL, USA, 2020. [Google Scholar]
- Larson, E.L.; Morton, H.E. Alcohols. In Disinfection, Sterilization, and Preservation, 4th ed.; Block, S.S., Ed.; Lea and Febiger: Philadelphia, PA, USA, 1991; pp. 191–203. [Google Scholar]
- World Alliance for Patient Safety—WHO Guidelines on Hand Hygiene in Health Care (Advanced Draft)-Global Patient Safety Challenge 2005–2006: CLEAN CARE IS SAFER CARE; World Health Organization: Geneva, Switzerland, 2006; Available online: https://www.who.int/patientsafety/information_centre/Last_April_versionHH_Guidelines%5B3%5D.pdf (accessed on 15 October 2020).
- Pittet, D.; Allegranzi, B.; Storr, J. The WHO Clean Care is Safer Care programme: Field-testing to enhance sustainability and spread of hand hygiene improvements. J. Infect. Public Health 2008, 1, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.D.; Russell, N.J. Biocides: Activity, action and resistance. Symp. Soc. Gen. Microbiol. 1995, 53, 327–365. [Google Scholar]
- Russell, A.D.; Chopra, I. Understanding Antibacterial Action and Resistance, 2nd ed.; Ellis Horwood: Chichester, UK, 1996. [Google Scholar]
- Brown, M.; Gilbert, P. Sensitivity of biofilms to antimicrobial agents. J. Appl. Bacteriol. 1993, 74, 87–97. [Google Scholar] [CrossRef]
- Al-Zahrani, S.H.M.; Baghdadi, A.M. Evaluation of the efficiency of Non alcoholic-Hand Gel Sanitizers products as an anti-bacterial. Nat. Sci. 2012, 10, 15–20. [Google Scholar]
- Al-Sayah, M.H. Chemical disinfectants of COVID-19: An overview. J. Water Health 2020, 18, 843–848. [Google Scholar] [CrossRef]
- Lin, Q.; Lim, J.Y.C.; Xue, K.; Yew, P.Y.M.; Owh, C.; Chee, P.L.; Loh, X.J. Sanitizing agents for virus inactivation and disinfection. View 2020, 1, 16. [Google Scholar] [CrossRef]
- Price, P.B. Ethyl Alcohol as a germicide. Arch. Surg. 1939, 38, 528. [Google Scholar] [CrossRef]
- Harrington, C.; Walker, H. The Germicidal Action of Alcohol. N. Engl. J. Med. 1903, 148, 548–552. [Google Scholar] [CrossRef]
- Temporary Policy for Manufacture of Alcohol for Incorporation Into AlcoholBased Hand Sanitizer Products During the Public Health Emergency (COVID-19). FDA March 2020, Updated February 10, 2021. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/temporary-policy-manufacture-alcohol-incorporation-alcohol-based-hand-sanitizer-products-during (accessed on 1 March 2021).
- Aniruddha, S.; Soaps or Santinizers. The Great Debate. Available online: https://www.niser.ac.in/COVID-19_SBS/docs/SoapVsSanitizers.pdf (accessed on 10 October 2020).
- Weber, D.J.; Sickbert-Bennett, E.; Gergen, M.F.; Rutala, W.A. Efficacy of Selected Hand Hygiene Agents Used to Remove Bacillus atrophaeus (a Surrogate of Bacillus anthracis) From Contaminated Hands. JAMA 2003, 289, 1274–1277. [Google Scholar] [CrossRef]
- Suchomel, M.; Kundi, M.; Pittet, D.; Weinlich, M.; Rotter, M.L. Testing of the World Health Organization recommended formulations in their application as hygienic hand rubs and proposals for increased efficacy. Am. J. Infect. Control 2012, 40, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Efficacy of ethanol against viruses in hand disinfection. J. Hosp. Infect. 2018, 98, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Cartner, T.; Brand, N.; Tian, K.; Saud, A.; Carr, T.; Stapleton, P.; Lane, M.E.; Rawlings, A.V. Effect of different alcohols on stratum corneum kallikrein 5 and phospholipase A 2 together with epidermal keratinocytes and skin irritation. Int. J. Cosmet. Sci. 2016, 39, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Houben, E.; De Paepe, K.; Rogiers, V. Skin condition associated with intensive use of alcoholic gels for hand disinfection: A combination of biophysical and sensorial data. Contact Dermat. 2006, 54, 261–267. [Google Scholar] [CrossRef]
- Suchomel, M.; Rotter, M. Ethanol in pre-surgical hand rubs: Concentration and duration of application for achieving European Norm EN 12791. J. Hosp. Infect. 2011, 77, 263–266. [Google Scholar] [CrossRef]
- Tarka, P.; Gutkowska, K.; Nitsch-Osuch, A. Assessment of tolerability and acceptability of an alcohol-based hand rub according to a WHO protocol and using apparatus tests. Antimicrob. Resist. Infect. Control 2019, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Safety and Effectiveness of Consumer Antiseptic Rubs; Topical Antimicrobial Drug Products for Over-the-Counter Human Use. FDA December 2019. Available online: https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/safety-and-effectiveness-consumer-antiseptic-rubs-topical-antimicrobial-drug-products-otc-human-use (accessed on 12 November 2020).
- Eggerstedt, S. Comparative efficacy of commercially available alcohol-based hand rubs and World Health Organization-recommended hand rubs. Am. J. Infect. Control 2013, 41, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Ormandy, K.; Bradley, C.; Fraise, A.; Hines, J. Dose considerations for alcohol-based hand rubs. J. Hosp. Infect. 2017, 95, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Kratzel, A.; Todt, D.; V’Kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Berardi, A.; Perinelli, D.R.; Merchant, H.A.; Bisharat, L.; Basheti, I.A.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. Hand sanitisers amid CoViD-19: A critical review of alcohol-based products on the market and formulation approaches to respond to increasing demand. Int. J. Pharm. 2020, 584, 119431. [Google Scholar] [CrossRef] [PubMed]
- Brannonpeppas, L. Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials 1990, 11, 635–644. [Google Scholar] [CrossRef]
- Jones, D.S.; Andrews, G.P.; Gorman, S.P. Characterization of crosslinking effects on the physicochemical and drug diffusional properties of cationic hydrogels designed as bioactive urological biomaterials. J. Pharm. Pharmacol. 2005, 57, 1251–1259. [Google Scholar] [CrossRef]
- Sastry, S.K.; Lakonishok, M.; Wu, S.; Truong, T.Q.; Huttenlocher, A.; Turner, C.E.; Horwitz, A.F. Quantitative Changes in Integrin and Focal Adhesion Signaling Regulate Myoblast Cell Cycle Withdrawal. J. Cell Biol. 1999, 144, 1295–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: A review. Iran Polym. J. 2010, 19, 375–398. [Google Scholar]
- Chirani, N.; Gritsch, L.; Motta, F.L.; Fare, S. History and Applications of Hydrogels. J. Biomed. Sci. 2015, 4. [Google Scholar] [CrossRef]
- Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nat. Cell Biol. 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Seeliger, M.A.; Breward, S.E.; Friedler, A.; Schon, O.; Itzhaki, L.S. Cooperative organization in a macromolecular complex. Nat. Struct. Mol. Biol. 2003, 10, 718–724. [Google Scholar] [CrossRef]
- Silva, S.S.; Mano, J.F.; Reis, R.L. Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit. Rev. Biotechnol. 2010, 30, 200–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Li, S.; El Ghzaoui, A.; Nouailhas, A.H.; Zhuo, R. Synthesis and Gelation Properties of PEG−PLA−PEG Triblock Copolymers Obtained by Coupling Monohydroxylated PEG−PLA with Adipoyl Chloride. Langmuir 2007, 23, 2778–2783. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Maitra, J.; Shukla, V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar] [CrossRef]
- Singhal, R.; Gupta, K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). Polym. Technol. Eng. 2015, 55, 54–70. [Google Scholar] [CrossRef]
- Ogata, T.; Nagayoshi, K.; Nagasako, T.; Kurihara, S.; Nonaka, T. Synthesis of hydrogel beads having phosphinic acid groups and its adsorption ability for lanthanide ions. React. Funct. Polym. 2006, 66, 625–633. [Google Scholar] [CrossRef]
- Dragan, E.S.; Dinu, M.V. Interpenetrating Polymer Network Composite Cryogels with Tailored Porous Morphology and Sorption Properties. Adv. Struct. Saf. Stud. 2015, 1286, 239–252. [Google Scholar] [CrossRef]
- Peppas, N.A. Biomedical Applications of Hydrogels Handbook. In Biomedical Applications of Hydrogels Handbook; Metzler, J.B., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 203–225. [Google Scholar]
- Kabir, S.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.R.; Ali, A.; Islam, M.N. Cellulose-based hydrogel materials: Chemistry, properties and their prospective ap-plications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.; Seyfoddin, A.; Fatihhi, S. Acrylic acid/acrylamide based hydrogels and its properties—A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. R Rep. 2015, 93, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, S.; Eyni, H.; Bazaz, S.R.; Nazari, H.; Asl, L.S.; Zaferani, H.; Kiani, V.; Mehrizi, A.A.; Soleimani, M. Hydrogels Based on Cellulose and its Derivatives: Applications, Synthesis, and Characteristics. Polym. Sci. Ser. A 2018, 60, 707–722. [Google Scholar] [CrossRef]
- Vedadghavami, A.; Minooei, F.; Mohammadi, M.H.; Khetani, S.; Kolahchi, A.R.; Mashayekhan, S.; Sanati-Nezhad, A. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017, 62, 42–63. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. Hydrogels as mucoadhesive and bioadhesive materials: A review. Biomaterials 1996, 17, 1553–1561. [Google Scholar] [CrossRef]
- Oyen, M.L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 2013, 59, 44–59. [Google Scholar] [CrossRef]
- Pape, A.C.H.; Bastings, M.M.C.; Kieltyka, R.E.; Wyss, H.M.; Voets, I.K.; Meijer, E.W.; Dankers, P.Y.W. Mesoscale characterization of su-pramolecular transient networks using SAXS and rheology. Int. J. Mol. Sci. 2014, 15, 1096–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Weitz, D.; Wyss, H.; Larsen, R. Oscillatory rheology: Measuring the viscoelastic behaviour of soft materials, GIT Laboratory. J. Eur. 2007, 11, 68–70. Available online: http://www.mate.tue.nl/~wyss/home/resources/publications/2007/Wyss_GIT_Lab_J_2007.pdf (accessed on 20 October 2020).
- Surini, S.; Amirtha, N.I.; Lestari, D.C. Formulation and effectiveness of a hand sanitizer gel produced using salam bark extract. Int. J. Appl. Pharm. 2018, 10, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Zatz, J.L.; Kushla, G.P. Pharmacheutical Dosage Form: Disperse System, 2nd ed.; Lieberman, H.A., Rieger, M.M., Banker, G.S., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 399–421. [Google Scholar]
- TDS-237: Neutralizing Carbopol® and PemulenTM Polymers in Aqueous and Hydroalcoholic Systems. Lubrizol 2009. Available online: https://www.academia.edu/42914025/TDS_237_Neutralizing_Carbopol_Pemulen_in_Aqueous_Hydroalcoholic_Systems_PH_1_ (accessed on 5 November 2020).
- SEPIMAX ZEN™—Multifunctional Powder Polymer for ZEN Attitude, SEPPIC 2019. Available online: https://www.seppic.com/en/sepimax-zen (accessed on 11 November 2020).
- CARBOPOL® ULTREZ 20 POLYMER, Lubrizol 2020. Available online: https://www.lubrizol.com/Personal-Care/Products/Product-Finder/Products-Data/Carbopol-Ultrez-20-polymer (accessed on 1 November 2020).
- Fresno, M.; Ramírez, A.; Jimenez, M. Systematic study of the flow behaviour and mechanical properties of Carbopol® Ultrez™ 10 hydroalcoholic gels. Eur. J. Pharm. Biopharm. 2002, 54, 329–335. [Google Scholar] [CrossRef]
- Ashland. Who Helps Formulate for Healthy Hands? We Do. Rheology Modifiers for Hand Sanitizer Formulations. 2018. Available online: https://www.ashland.com/industries/personal-and-home-care/home-i-and-i/who-helps-formulate-for-healthy-hands-we-do (accessed on 21 October 2020).
- Ashland. BlanoseTM Refined Sodium Carboxymethyl Cellulose. 2012. Available online: https://www.ashland.com/industries/pharmaceutical/oral-solid-dose/blanose-sodium-carboxymethylcellulose (accessed on 13 November 2020).
- USP—United States Pharmacopeia and National Formulary (43–NF 38). In United States Pharmacopeial Convention; The U.S. Pharmacopeia (USP): Rockville, MD, USA, 2020.
- Ph. Eur.—The European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2020.
- The Japanese Pharmacopoeia, 17th ed.; PMDR, Yakuji Nippo, Ltd.: Chiyoda-ku, Tokyo, Japan, 2017.
- Dow Chemical. Methocel Cellulose Ethers Technical Handbook; The Dow Chemical Company: Midland, MI, USA, 2002. [Google Scholar]
- Li, C.L.; Martini, L.G.; Ford, J.L.; Roberts, M. The use of hypromellose in oral drug delivery. J. Pharm. Pharmacol. 2005, 57, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Hand Sanitizer Gel Using Tylopur® DG-4T. ShinEtsu 2020. Available online: https://www.biogrund.com/wp-content/uploads/2020/05/Technical-Information-.-T-002-Hand-Sanitizer-Gel-Formulation-Tylopur-DG-4T.pdf (accessed on 10 October 2020).
- Ahmed-Lecheheb, D.; Cunat, L.; Hartemann, P.; Hautemanière, A. Prospective observational study to assess hand skin condition after application of alcohol-based hand rub solutions. Am. J. Infect. Control 2012, 40, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Harbarth, S.; Pittet, D.; Grady, L.; Zawacki, A.; Potter-Bynoe, G.; Samore, M.H.; Goldmann, D.A. Interventional study to evaluate the impact of an alcohol-based hand gel in improving hand hygiene compliance. Pediatr. Infect. Dis. J. 2002, 21, 489–495. [Google Scholar] [CrossRef]
- Kramer, A.; Bernig, T.; Kampf, G. Clinical double-blind trial on the dermal tolerance and user acceptability of six alcohol-based hand disinfectants for hygienic hand disinfection. J. Hosp. Infect. 2002, 51, 114–120. [Google Scholar] [CrossRef]
- Menegueti, M.G.; Laus, A.M.; Ciol, M.A.; Auxiliadora-Martins, M.; Basile-Filho, A.; Gir, E.; Pires, D.; Pittet, D.; Bellissimo-Rodrigues, F. Glycerol content within the WHO ethanol-based handrub formulation: Balancing tolerability with antimicrobial efficacy. Antimicrob. Resist. Infect. Control 2019, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, M.; Weinlich, M.; Kundi, M. Influence of glycerol and an alternative humectant on the immediate and 3-h bactericidal efficacies of two isopropanol-based antiseptics in laboratory experiments in vivo according to EN 12791. Antimicrob. Resist. Infect. Control 2017, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, M.; Rotter, M.; Weinlich, M.; Kundi, M. Glycerol significantly decreases the three hour efficacy of alcohol-based surgical hand rubs. J. Hosp. Infect. 2013, 83, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Handbook of Cosmetic Science and Technology; Apple Academic Press: Palm Bay, FL, USA, 2014.
- EN 1500, European Standard EN 1500. Chemical Disinfectants and Antiseptics e Hygienic Handrub e Test Method and Re-Quirements. 2013 (Phase 2/Step 2). Available online: https://standards.iteh.ai/catalog/standards/cen/56eceb9b-1eb4-4497-ac65-4472bee8c162/en-1500-2013 (accessed on 20 December 2020).
- Guidance on the Applicable Legislation for Leave-On Hand Cleaners and Hand Disinfectants (Gel, Solution, etc.) European Com-Mission 03.30.2020. Available online: https://ec.europa.eu/docsroom/documents/40523 (accessed on 20 December 2020).
1 Ethanol 96%: 80% v/v Hydrogen peroxide 3%: 1.45% v/v Glycerol 98%: 0.125% v/v Water |
2 Isopropyl alcohol 99.8%: 75% v/v Hydrogen peroxide 3%: 1.45% v/v Glycerol 98%: 0.125% v/v Water |
Antiseptic Compounds | Suggested % Amount | Chemical Agents | Antimicrobial Activity |
---|---|---|---|
Quaternary ammonium compounds | ≤1% | Benzalkonium chloride, benzethonium chloride, cetrimide, cetylpyridium chloride | Lower surface tension. Enzyme inactivation. Degradation of cell proteins. |
Iodine/Iodophors | ≤1% | Povidone-iodine (polyvinylpyrrolidone with iodine) | Penetration through the cell membranes, subsequent cell inactivation due to the formation of complexes with amino acids and unsaturated fatty acids. Subsequent impaired protein synthesis and alteration of cell membranes. |
Chlorine derivatives | 3–6% | Chloroxylenol (phenolic compound) | Inactivation of bacterial enzymes. Alteration of cell walls. |
Chlorhexidine (bisbiguanide) | Disruption of cytoplasmic membranes. | ||
Triclosan | Penetrate cytoplasmic bilayer. | ||
Sodium hypochlorite | Oxidation of cell proteins. Oxidation of DNA and/or RNA. |
Chemical Name (INCI) | Trade Name (Supplier) | Dosage Range (%) | Max EtOH Amount (% v/v) | pH Range | Electrolyte Tolerance |
---|---|---|---|---|---|
Carbomer | CARBOPOL ULTREZ 10 (Lubrizol) | 0.1 to 0.5 | 60 to 95 (according to neutralizer) | 5 to 9 | low |
CARBOPOL 980 (Lubrizol) ASHLAND 980 Carbomer (Ashland) | 0.1 to 0.5 | 60 to 80 (according to neutralizer) | 5 to 10 | low | |
TEGO Carbomer 140 (Evonik) | 0.05 to 1.0 | 60 to 95 | 3 to 10 | low | |
CARBOPOL 940 (Lubrizol) ASHLAND 940 Carbomer (Ashland) | 0.1 to 0.5 | 60 to 95 (according to neutralizer) | 5 to 10 | low | |
Acrylates / C10–30 Alkyl Acrylate Crosspolymer | CARBOPOL ULTREZ 21 (Lubrizol) | 0.1 to 0.5 | 60 to 95 (according to neutralizer | 5 to 10 | low |
CARBOPOL ULTREZ 20 | 0.1 to 0.6 | 60 to 95 (according to neutralizer) | 4 to 11 (lower viscosity) | low | |
TEGO® Carbomer 341ER (Evonik) | 0.05 to 1.0 | 60 to 95 | 4 to 11 (lower viscosity) | low | |
Cellulose gum (CMC) | AQUALON (BLANOSE) (Ashland) | 1.0 to 2.0 | 60 | 3 to 12 | low |
Hydroxyethylcellulose (HEC) | NATROSOL 250 HHR CS (Ashland) | 0.2 to 2.5 | 65 | 3 to 12 | good |
TYLOSE HS (Shin-Etsu) | 0.5 to 2.0 | 62 | 3 to 12 | good | |
Hdroxypropylmethyl cellulose (HPMC) | BENECEL E10M (Ashland) TYLOPURE DG (Shin-Etsu) | 0.2 to 2.0 | 70 | 5 to 8 | good |
Hydroxypropyl Guar | JAGUAR HP 120COS (Solvay) | 1 to 1.5 | 70 | 4 to 8 | very good |
Ammonium Acryloyl dimethyltaurate/ Beheneth-25 Methacrylate Crosspolymer (pre-neutralized) | ARISTOFLEX HMB (Clariant) | 0.5 to 1.0 | 70 | 2.5 to 8 | low |
Ammonium Acryloyl dimethyltaurate/VP Copoymer (Pre neutralized) | ARISTOFLEX AVC (Clariant) | 0.5 to 1.0 | 70 | 4 to 8 | low |
Sodium Acryloyldimethyltaurate/ VP Crosspolymer (Pre neutralized) | ARISTOFLEX AVS (Clariant) | 0.5 to 1.2 | 70 | 4 to 11 | low |
Polyacrylates Crosspolymer-11 (pre-neutralized) | ARISTOFLEX VELVET (Clariant) | 0.5 to 1.5 | 70 | 3 to 8 | low |
Sodium Polyacryloyl dimethyltaurate | ARISTOFLEX SILK (Clariant) | 1 to 1.5 | 70 | 2 to 11 | good |
Polyacrylamide—C13–14-isoparaffin—laureth 7 (Pre-neutralized) | SEPIGEL 305 (Seppic) | 0.5 to 5.0 | 70 | 3 to 12 | very low |
Polyacrylate 13—polyisobutene—polysorbate 20 (Pre-neutralized) | SEPIPLUS 400 (Seppic) | 0.1 to 2.2 | 65 | 3 to 12 | good |
Hydroxyethyl acrylate—sodium acryloyldimethyl taurate copolymer (Pre-neutralized) | SEPINOV EMT10 (Seppic) | 0.5 to 3.0 | 65 | 3 to 12 | good |
Polyacrylate crosspolymer—6 (Pre-neutralized) | SEPIMAX ZEN (Seppic) | 0.8 to 2.0 | 70 | 2 to 8 | very good |
Polymer Trade Name | Polymer Amount (%) | EtOH Amount (% v/v) | Notes (Additives) | Hydrogel Aspect * | Hydrogel Viscosity (mPa.s) ** |
---|---|---|---|---|---|
CARBOPOL ULTREZ 10 (Lubrizol) | 0.5 | 70 | 0.35% aminomethyl propanol (neutralizer) | Clear | 3500 to 4500 |
ASHLAND 980 Carbomer (Ashland) | 0.35 | 73 | 0.15% aminomethyl propanol (neutralizer) 1.5% glycerin | Clear | 15,000 to 25,000 |
TEGO® Carbomer 341 ER (Evonik) | 0.3 | 70 | 0.5% tetrahydroxy propyl Ethylenediamine, (neutralizer) 3% glycerin | Clear | 4350 |
CARBOPOL 940 (Lubrizol) | 0.5 | 50 | triethanolamine up to pH 6 | Clear | 1200 |
CARBOPOL ULTREZ 21 (Lubrizol) | 0.2 | 60 | 0.25%Triisopropanolamine (neutralizer) 0.5% propylen glycol | Clear | 8000 to 12,000 |
CARBOPOL ULTREZ 20 (Lubrizol) | 0.2 | 60 | 0.25%Triisopropanolamine (neutralizer) 0.5% propylen glycol | Clear | 4000 to 6000 |
NATROSOL 250 HHR CS (Ashland) | 1.4 | 65 | - | Turbid | 14,700 |
Tylose HS 100000 (Shin-Etsu) | 1.5 | 62 | triethanolamine up to pH 8.5 2% glycerin | Turbid | 37,000 |
Benecel E10M (Ashland) | 1.5 | 75 65 | 1.5% glycerin 2.0 % glycerin | Clear | 4000 to 6000 1325 |
TYLOPURE DG 4T (Shin-Etsu) | 2.0 | 65 75 85 | 3.0 % glycerin | Clear | 7768 6184 5352 |
JAGUAR® HP 120 COS (Solvay) | 1.2 | 75 | citric acid (pH adjuster) | Clear | 3500 to 5000 |
ARISTOFLEX® HMB (Clariant) | 1.0 | 62 | - | Clear | 20,000 |
ARISTOFLEX® AVC (Clariant) | 1.0 | 65 75 | - | Clear | 30,000 40,000 |
ARISTOFLEX® VELVET (Clariant) | 0.45 to 0.5 | 70 to 80 | 2% glycerin | Clear | 2940 to 2100 |
ARISTOFLEX® SILK (Clariant) | 1% | 60 | 1.5% glycerin | Clear | 14,000 |
SEPIGEL 305 (Seppic) | 1.6 | 65 | 3% glycerin | Turbid | 8000 |
2.0 | 70 | 0.2% sepimax zen | Turbid | 8000 | |
2.2 | 65 | 1% SIMULSOL 1293 (solubilizing nonionic Surfactant—Seppic) | Clear | 7148 | |
3 | 65 | - | Turbid | 35,000 | |
SEPIPLUS 400 (Seppic) | 2.25 | 65 | - | Turbid | 46,000 |
SEPINOV EMT10 (Seppic) | 0.80 | 65 | sprayable | Turbid | 580 |
1.50 | 65 | - | Turbid | 8300 | |
SEPIMAX ZEN (Seppic) | 0.80 | 66 | 3% glycerin | Clear | 8900 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, C.; Russo, E. Hydrogels in Hand Sanitizers. Materials 2021, 14, 1577. https://doi.org/10.3390/ma14071577
Villa C, Russo E. Hydrogels in Hand Sanitizers. Materials. 2021; 14(7):1577. https://doi.org/10.3390/ma14071577
Chicago/Turabian StyleVilla, Carla, and Eleonora Russo. 2021. "Hydrogels in Hand Sanitizers" Materials 14, no. 7: 1577. https://doi.org/10.3390/ma14071577
APA StyleVilla, C., & Russo, E. (2021). Hydrogels in Hand Sanitizers. Materials, 14(7), 1577. https://doi.org/10.3390/ma14071577