Towards Embedded Computation with Building Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Estimation of Time Delay and Embedding Dimension Parameters
3.2. Analysis of Non-Linear Dynamics
3.3. Classification of a Waveform on the Basis of the Decision Tree Method
4. Discussion
- √
- If calculated permutation entropy decreases and Katz fractal dimension is of mixed trends, then the signal is of the triangle wave shape.
- √
- If calculated Petrosian fractal dimension is increasing, then the signal is of sinusoidal shape, if its decreasing (and was increasing in the previous step), then it is of square shape.
- If the calculated Petrosian fractal dimension (OUT1) is increasing, then the signal is of sinusoidal shape, if its decreasing (and was increasing in the previous step), then it is of square or triangular shape.
- If calculated Petrosian fractal dimension (OUT2) is increasing, then the signal is of triangular shape, if its decreasing (and was decreasing in the previous step), then it is of square shape.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, F. Electricity Access Keeps Climbing Globally. Available online: https://www.statista.com/chart/16552/electricity-access-worldwide/ (accessed on 26 March 2020).
- De Silva, A.P.; McClenaghan, N.D.; McCoy, C.P. Handbook of Electron Transfer; Balzani, V., de Silva, A.P., Gould, E.J., Eds.; WILEY-VCH: Weinheim, Germany, 2000; Volume 5, p. 156. [Google Scholar]
- Kraeling, M.; Brogioli, M.C. Optimizing Embedded Software for Power. In Software Engineering for Embedded Systems; Oshana, R., Kraeling, M., Eds.; Newnes: Newton, MA, USA, 2019; pp. 465–499. [Google Scholar] [CrossRef]
- Global IoT Market Report, History and Forecast 2013–2025, Breakdown Data by Companies, Key Regions, Types and Application. Available online: https://www.itintelligencemarkets.com/reports/Global-IoT-Analytics-Market-Report--History-and-Forecast-2013-2025--Breakdown-Data-by-Companies--Key-Regions--Types-and-Application-2619 (accessed on 10 February 2021).
- Total Market Value of the Global Smart Homes Market in 2014 and 2020. Available online: https://www.statista.com/statistics/420755/global-smart-homes-market-value/ (accessed on 26 March 2020).
- Truemann, C. Why Data Centres are the New Frontier in the Fight against Climate Change. Available online: https://www.computerworld.com/article/3431148/why-data-centres-are-the-new-frontier-in-the-fight-against-climate-change.html (accessed on 10 January 2020).
- Miller, J.F.; Downing, K. Evolution in materio: Looking beyond the silicon box. In Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware, Washington, DC, USA, 15–18 July 2002; pp. 167–176. [Google Scholar]
- Harding, S.; Miller, J.F. Evolution in Materio. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2009; pp. 3220–3233. [Google Scholar] [CrossRef]
- Miller, J.F.; Harding, S.L.; Tufte, G. Evolution-in-materio: Evolving computation in materials. Evol. Intell. 2014, 7, 49–67. [Google Scholar] [CrossRef]
- Dale, M.; Miller, J.F.; Stepney, S. Reservoir Computing as a Model for In-Materio Computing. In Advances in Unconventional Computing: Volume 1: Theory; Adamatzky, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 533–571. [Google Scholar] [CrossRef]
- Miller, J.F.; Hickinbotham, S.J.; Amos, M. In Materio Computation Using Carbon Nanotubes. In Computational Matter; Stepney, S., Rasmussen, S., Amos, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 33–43. [Google Scholar] [CrossRef]
- Yassine, A.; Singh, S.; Hossain, M.S.; Muhammad, G. IoT big data analytics for smart homes with fog and cloud computing. Future Gener. Comput. Syst. 2019, 91, 563–573. [Google Scholar] [CrossRef]
- Shuhaiber, A.; Mashal, I. Understanding users’ acceptance of smart homes. Technol. Soc. 2019, 58, 101110. [Google Scholar] [CrossRef]
- Mokhtari, G.; Anvari-Moghaddam, A.; Zhang, Q. A New Layered Architecture for Future Big Data-Driven Smart Homes. IEEE Access 2019, 7, 19002–19012. [Google Scholar] [CrossRef]
- Fedotov, D.; Matsuda, Y.; Minker, W. From Smart to Personal Environment: Integrating Emotion Recognition into Smart Houses. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 943–948. [Google Scholar]
- Adamatzky, A.; Szaciłowski, K.; Konkoli, Z.; Werner, L.C.; Przyczyna, D.; Sirakoulis, G.C. On buildings that compute. A proposal. In From Astrophysics to Unconventional Computation; Adamatzky, A., Kendon, V., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar]
- Adamatzky, A.; Chiolerio, A.; Szaciłowski, K. Liquid metal droplet solves maze. Soft Matter 2020, 16, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Fullarton, C.; Draper, T.C.; Phillips, N.; Mayne, R.; de Lacy Costello, B.P.J.; Adamatzky, A. Evaporation, Lifetime, and Robustness Studies of Liquid Marbles for Collision-Based Computing. Langmuir 2018, 34, 2573–2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamatzky, A. A would-be nervous system made from a slime mold. Artif. Life 2015, 21, 73–91. [Google Scholar] [CrossRef]
- Adamatzky, A. Advances in Physarum Machines. Sensing and Computing with Slime Mold; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Adamatzky, A. Towards fungal computer. Interface Focus 2018, 8, 20180029. [Google Scholar] [CrossRef] [PubMed]
- Adamatzky, A. On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 2018, 8, 7873. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.; Draper, T.C.; Mayne, R.; Adamatzky, A. Marimo machines: Oscillators, biosensors and actuators. J. Biol. Eng. 2019, 13, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentili, P.L.; Micheau, J.-C. Light and chemical oscillations: Review and perspectives. J. Photochem. Photobiol. C 2019, 100321. [Google Scholar] [CrossRef]
- Szaciłowski, K.; Stasicka, Z. Molecular switches based on cyanoferrate complexes. Coord. Chem. Rev. 2002, 229, 17–26. [Google Scholar] [CrossRef]
- Horsman, C.; Stepney, S.; Wagner, R.C.; Kendon, V. When does a physical system compute? Proc. R. Soc. A 2014, 470, 20140182. [Google Scholar] [CrossRef] [Green Version]
- Stepney, S.; Rasmussen, S.; Amos, M. Computational Matter; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Dimov, D.; Amit, I.; Gorrie, O.; Barnes, M.D.; Townsend, N.J.; Neves, A.I.S.; Withers, F.; Russo, S.; Craciun, M.F. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Adv. Funct. Mater. 2018, 28, 1705183. [Google Scholar] [CrossRef]
- Downey, A.; D’Alessandro, A.; Laflamme, S.; Ubertini, F. Smart bricks for strain sensing and crack detection in masonry structures. Smart Mater. Struct. 2017, 27, 015009. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ou, J.P. Smart Concrete, Sensors and Self-Sensing Concrete Structures. Key Eng. Mater. 2008, 400, 69–80. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Yu, X. Intrinsic self-sensing concrete and structures: A review. Measurement 2015, 59, 110–128. [Google Scholar] [CrossRef]
- Materazzi, A.L.; Ubertini, F.; D’Alessandro, A. Carbon nanotube cement-based transducers for dynamic sensing of strain. Cem. Concr. Compos. 2013, 37, 2–11. [Google Scholar] [CrossRef]
- Quinn, W.; Kelly, G.; Barrett, J. Development of an embedded wireless sensing system for the monitoring of concrete. Struct. Health Monit. 2012, 11, 381–392. [Google Scholar] [CrossRef]
- Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for internet of things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [Google Scholar] [CrossRef]
- Xiao, L.; Wan, X.; Lu, X.; Zhang, Y.; Wu, D. IoT security techniques based on machine learning: How do IoT devices use AI to enhance security? IEEE Sign. Proc. Mag. 2018, 35, 41–49. [Google Scholar] [CrossRef]
- Konkoli, Z. Reservo On Reservoir Computing: From Mathematical Foundations to Unconventional Applications. In Advances in Unconventional Computing; Springer: Cham, Switzerland, 2017; pp. 573–607. [Google Scholar]
- Konkoli, Z.; Nichele, S.; Dale, M.; Stepney, S. Reservoir computing with computational matter. In Computational Matter; Springer: Cham, Switzerland, 2018; pp. 269–293. [Google Scholar]
- Athanasiou, V.; Konkoli, Z. On using reservoir computing for sensing applications: Exploring environment-sensitive memristor networks. Int. J. Parallel Emergent Distrib. Syst. 2018, 33, 367–386. [Google Scholar] [CrossRef]
- Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn Ger. Ger. Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 2001, 148, 13. [Google Scholar]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Konkoli, Z.; Stepney, S.; Broersma, H.; Dini, P.; Nehaniv, C.L.; Nichele, S. Philosophy of computation. In Computational Matter; Stepney, S., Rasmussen, S., Amos, M., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Wlaźlak, E.; Marzec, M.; Zawal, P.; Szaciłowski, K. Memristor in a Reservoir System—Experimental Evidence for High-Level Computing and Neuromorphic Behavior of PbI2. ACS Appl. Mater. Interfaces 2019, 11, 17009–17018. [Google Scholar] [CrossRef] [PubMed]
- Wlaźlak, E.; Zawal, P.; Szaciłowski, K. Neuromorphic Applications of a Multivalued [SnI4 {(C6H5) 2SO} 2] Memristor Incorporated in the Echo State Machine. ACS Appl. Electron. Mater. 2020, 2, 329–338. [Google Scholar] [CrossRef]
- Du, C.; Cai, F.; Zidan, M.A.; Ma, W.; Lee, S.H.; Lu, W.D. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, G.; Nakane, R.; Yamane, T.; Takeda, S.; Nakano, D.; Nakagawa, S.; Hirose, A. Waveform Classification by Memristive Reservoir Computing. In Neural Information Processing; Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.M., Eds.; Springer: Cham, Switzerland, 2017; Volume 4. [Google Scholar]
- Tanaka, G.; Yamane, T.; Héroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100–123. [Google Scholar] [CrossRef]
- Przyczyna, D.; Zawal, P.; Mazur, T.; Strzelecki, M.; Gentili, P.L.; Szaciłowski, K. In-materio neuromimetic devices: Dynamics, information processing and pattern recognition. Jpn. J. Appl. Phys. 2020, 59, 050504. [Google Scholar] [CrossRef] [Green Version]
- Przyczyna, D.; Pecqueur, S.; Vuillaume, D.; Szaciłowski, K. Reservoir Computing for Sensing—An Experimental Approach. Int. J. Unconv. Comput. 2019, 14, 267–284. [Google Scholar]
- Bose, S.K.; Lawrence, C.P.; Liu, Z.; Makarenko, K.S.; van Damme, R.M.J.; Broersma, H.J.; van der Wiel, W.G. Evolution of a designless nanoparticle network into reconfigurable Boolean logic. Nat. Nanotechnol. 2015, 10, 1048–1052. [Google Scholar] [CrossRef]
- Tian, B.; Liu, L.; Yan, M.; Wang, J.; Zhao, Q.; Zhong, N.; Xiang, P.; Sun, L.; Peng, H.; Shen, H.; et al. A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Adv. Electron. Mater. 2019, 5, 1800600. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Hwang, H.; Yoo, I.K. Ferroelectric materials for neuromorphic computing. APL Mater. 2019, 7, 091109. [Google Scholar] [CrossRef] [Green Version]
- Robert, G.; Damjanovic, D.; Setter, N. Preisach modeling of ferroelectric pinched loops. Appl. Phys. Lett. 2000, 77, 4413–4415. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Müller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T.; et al. Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films. Adv. Mater. 2015, 27, 1811–1831. [Google Scholar] [CrossRef] [PubMed]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Jin, L.; Li, F.; Zhang, S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 2014, 97, 1–27. [Google Scholar] [CrossRef]
- Audzijonis, A.; Grigas, J.; Kajokas, A.; Kvedaravičius, S.; Paulikas, V. Origin of ferroelectricity in SbSI. Ferroelectrics 1998, 219, 37–45. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D. A Ferroelectric-Photovoltaic Effect in SbSI Nanowires. Nanomaterials 2019, 9, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotome, M.; Nakamura, M.; Fujioka, J.; Ogino, M.; Kaneko, Y.; Morimoto, T.; Zhang, Y.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.; et al. Spectral dynamics of shift current in ferroelectric semiconductor SbSI. Proc. Nat. Acad. Sci. USA 2019, 116, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintilie, L.; Boldyreva, K.; Alexe, M.; Hesse, D. Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations. J. Appl. Phys. 2008, 103, 024101. [Google Scholar] [CrossRef]
- Fuller, W.A. Introduction to Statistical Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 428. [Google Scholar]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a time series. Phys. Rev. Lett. 1980, 45, 712. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Cham, Switzerland, 1981; pp. 366–381. [Google Scholar]
- Sauer, T.; Yorke, J.A.; Casdagli, M. Embedology. J. Stat. Phys. 1991, 65, 579–616. [Google Scholar] [CrossRef]
- Bradley, E.; Kantz, H. Nonlinear time-series analysis revisited. Chaos 2015, 25, 097610. [Google Scholar] [CrossRef] [Green Version]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. The Mathematical Theory of Communication, by CE Shannon (and Recent Contributions to the Mathematical Theory of Communication), W. Weaver; University of illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Casdagli, M.; Eubank, S.; Farmer, J.D.; Gibson, J. State space reconstruction in the presence of noise. Phys. D Nonlinear Phenom. 1991, 51, 52–98. [Google Scholar] [CrossRef]
- Daw, C.S.; Finney, C.E.A.; Tracy, E.R. A review of symbolic analysis of experimental data. Rev. Sci. Instrum. 2003, 74, 915–930. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D Nonlinear Phenom. 1997, 110, 43–50. [Google Scholar] [CrossRef]
- Tang, L.; Lv, H.; Yang, F.; Yu, L. Complexity testing techniques for time series data: A comprehensive literature review. Chaos Solitons Fractals 2015, 81, 117–135. [Google Scholar] [CrossRef]
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D.; Ciliberto, S. Liapunov exponents from time series. Phys. Rev. A 1986, 34, 4971–4979. [Google Scholar] [CrossRef]
- Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 1994, 185, 77–87. [Google Scholar] [CrossRef]
- Vallejo, J.C.; Sanjuan, M.A.F. Predictability of Chaotic Dynamics; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Vulpiani, A. Chaos: From Simple Models to Complex Systems; World Scientific: Singapore, 2010; Volume 17. [Google Scholar]
- Lorenz, E. The butterfly effect. World Sci. Ser. Nonlinear Sci. Ser. A 2000, 39, 91–94. [Google Scholar]
- Hardstone, R.; Poil, S.-S.; Schiavone, G.; Jansen, R.; Nikulin, V.V.; Mansvelder, H.D.; Linkenkaer-Hansen, K. Detrended fluctuation analysis: A scale-free view on neuronal oscillations. Front. Physiol. 2012, 3, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassberger, P.; Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346. [Google Scholar] [CrossRef]
- Nerenberg, M.; Essex, C. Correlation dimension and systematic geometric effects. Phys. Rev. A 1990, 42, 7065. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. -Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Richman, J.S.; Lake, D.E.; Moorman, J.R. Sample entropy. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 384, pp. 172–184. [Google Scholar]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Riedl, M.; Müller, A.; Wessel, N. Practical considerations of permutation entropy. Eur. Phys. J. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Yan, R.; Liu, Y.; Gao, R.X. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. Mech. Syst. Signal Process. 2012, 29, 474–484. [Google Scholar] [CrossRef]
- Petrosian, A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In Proceedings of the Eighth IEEE Symposium on Computer-Based Medical Systems, Lubbock, TX, USA, 9–10 June 1995; pp. 212–217. [Google Scholar]
- Esteller, R.; Vachtsevanos, G.; Echauz, J.; Litt, B. A comparison of waveform fractal dimension algorithms. IEEE Trans. Circ. Syst. 2001, 48, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, B.; Dutt, D.N. A note on fractal dimensions of biomedical waveforms. Comput. Biol. Med. 2009, 39, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Romera, M.; Talatchian, P.; Tsunegi, S.; Abreu Araujo, F.; Cros, V.; Bortolotti, P.; Trastoy, J.; Yakushiji, K.; Fukushima, A.; Kubota, H.; et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 2018, 563, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonon, L.; Ortega, J. Reservoir Computing Universality With Stochastic Inputs. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Athanasiou, V.; Konkoli, Z. On mathematics of universal computation with generic dynamical systems. In From Parallel to Emergent Computing; Adamatzky, A., Akl, S.G., Sirakoulis, G.C., Eds.; CRC Press: London, UK, 2019. [Google Scholar]
- Blachecki, A.; Mech-Piskorz, J.; Gajewska, M.; Mech, K.; Pilarczyk, K.; Szaciłowski, K. Organotitania-Based Nanostructures as a Suitable Platform for the Implementation of Binary, Ternary, and Fuzzy Logic Systems. ChemPhysChem 2017, 18, 1798–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilarczyk, K.; Daly, B.; Podborska, A.; Kwolek, P.; Silverson, V.A.D.; de Silva, A.P.; Szaciłowski, K. Coordination chemistry for information acquisition and processing. Coord. Chem. Rev. 2016, 325, 135–160. [Google Scholar] [CrossRef] [Green Version]
- Warzecha, M.; Oszajca, M.; Pilarczyk, K.; Szaciłowski, K. A three-valued photoelectrochemical logic device realising accept anything and consensus operations. Chem. Commun. 2015, 51, 3559–3561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonon, L.; Ortega, J.-P. Fading memory echo state networks are universal. Neural Netw. 2021, 138, 10–13. [Google Scholar] [CrossRef]
- Grigoryeva, L.; Ortega, J.-P. Echo state networks are universal. Neural Netw. 2018, 108, 495–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosoli, G.; Mobili, A.; Giulietti, N.; Chiariotti, P.; Pandarese, G.; Tittarelli, F.; Bellezze, T.; Mikanovic, N.; Revel, G.M. Performance of concretes manufactured with newly developed low-clinker cements exposed to water and chlorides: Characterization by means of electrical impedance measurements. Constr. Build. Mater. 2021, 271, 121546. [Google Scholar] [CrossRef]
- Hassi, S.; Ebn Touhami, M.; Boujad, A.; Benqlilou, H. Assessing the effect of mineral admixtures on the durability of Prestressed Concrete Cylinder Pipe (PCCP) by means of electrochemical impedance spectroscopy. Constr. Build. Mater. 2020, 262, 120925. [Google Scholar] [CrossRef]
- Yu, J.; Sasamoto, A.; Iwata, M. Wenner method of impedance measurement for health evaluation of reinforced concrete structures. Constr. Build. Mater. 2019, 197, 576–586. [Google Scholar] [CrossRef]
Chaos Index | Sine | Triangle | Square |
---|---|---|---|
Permutation entropy | increases | decreases | increases |
Katz fractal dimension | increases | mixed | increases |
Petrosian fractal dimension | increases | decreases | decreases |
Chaos Index | Sine | Triangle | Square |
---|---|---|---|
Petrosian fractal dimension (OUT1) | Increases | Decreases | Decreases |
Petrosian fractal dimension (OUT2) | Decreases | Increases | Decreases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przyczyna, D.; Suchecki, M.; Adamatzky, A.; Szaciłowski, K. Towards Embedded Computation with Building Materials. Materials 2021, 14, 1724. https://doi.org/10.3390/ma14071724
Przyczyna D, Suchecki M, Adamatzky A, Szaciłowski K. Towards Embedded Computation with Building Materials. Materials. 2021; 14(7):1724. https://doi.org/10.3390/ma14071724
Chicago/Turabian StylePrzyczyna, Dawid, Maciej Suchecki, Andrew Adamatzky, and Konrad Szaciłowski. 2021. "Towards Embedded Computation with Building Materials" Materials 14, no. 7: 1724. https://doi.org/10.3390/ma14071724
APA StylePrzyczyna, D., Suchecki, M., Adamatzky, A., & Szaciłowski, K. (2021). Towards Embedded Computation with Building Materials. Materials, 14(7), 1724. https://doi.org/10.3390/ma14071724