Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam
Abstract
:1. Introduction
2. Sensor Design and Theoretical Model
2.1. Sensor Structure
2.2. Sensing Principle
2.3. Theoretical Model
3. Fabrication and Experimental Test
3.1. Fabrication
3.1.1. Synthesis of Ionic Conductors
3.1.2. Preparation of Dielectric
3.1.3. Preparation of Uniform-Strength Cantilever Beam
3.2. Experimental Setup
3.3. Measurement
3.3.1. Force vs. Capacitance Change
3.3.2. Displacement vs. Capacitance Change
4. Comparative Verification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeo, W.H.; Kim, Y.S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S.H.; Kang, Z. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Zhong, M.; Fang, Z.; Wan, P.; Yu, G. A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing. Nano Lett. 2019, 19, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Trung, T.Q.; Lee, N.E. Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare. Adv. Mater. 2016, 28, 4338–4372. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Ha, M.; Cho, S.; Ko, H. Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. J. Mater. Chem. B 2016, 4, 2999–3018. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Niu, Z.; Wang, H.; Leow, W.R.; Chen, X. Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small 2014, 10, 3625–3631. [Google Scholar] [CrossRef]
- Cunguang, L.; Shuo, W.; Tie, L.; Chenyao, P.; Lei, H.; Mingtao, R.; Xiuling, L. A Graphene-Based Flexible Pressure Sensor with Applications to Plantar Pressure Measurement and Gait Analysis. Materials 2017, 10, 1068. [Google Scholar]
- Mannsfeld, S.C.; Tee, B.C.; Stoltenberg, R.M.; Chen, C.V.H.; Barman, S.; Muir, B.V.; Sokolov, A.N.; Reese, C.; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar] [CrossRef]
- Jeon, G.-J.; Yeom, H.-I.; Jin, T.; Kim, J.; Yang, J.; Park, S.-H.K. A highly sensitive, stable, scalable pressure sensor based on a facile baking-inspired foaming process for a human-computer interface. J. Mater. Chem. C 2020, 8, 4271–4278. [Google Scholar] [CrossRef]
- Wu, W.; Wen, X.; Wang, Z.L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, X.; Shao, J.; An, N.; Tian, H.; Wang, C.; Han, T.; Wang, L.; Lu, B. High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO3 Nanocomposite Micropillars for Self-Powered Flexible Sensors. Small 2017, 13, 1604245. [Google Scholar] [CrossRef]
- Chen, X.; Song, Y.; Chen, H.; Zhang, J.; Zhang, H. An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J. Mater. Chem. A 2017, 12361–12368. [Google Scholar] [CrossRef]
- Dong, K.; Deng, J.; Ding, W.; Wang, A.C.; Wang, P.; Cheng, C.; Wang, Y.-C.; Jin, L.; Gu, B.; Sun, B.; et al. Versatile Core-Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Real-Time Human-Interactive Sensing. Adv. Energy Mater. 2018, 23, 1801114. [Google Scholar] [CrossRef]
- Ahmadi, R.; Arbatani, S.; Ozhikandathil, J.; Packirisamy, M.; Dargahi, J. A multi-purpose optical microsystem for static and dynamic tactile sensing. Sens. Actuators A Phys. 2015, 235, 37–47. [Google Scholar] [CrossRef]
- Viry, L.; Levi, A.; Totaro, M.; Mondini, A.; Mattoli, V.; Mazzolai, B.; Beccai, L. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv. Mater. 2014, 26, 2659–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Shi, L.; Yang, M.; Wang, J.; Yang, R.; Qu, S.; Lu, T. Highly stretchable and transparent dielectric gels for high sensitivity tactile sensors. Smart Mater. Struct. 2018, 28, 024003. [Google Scholar] [CrossRef]
- Sun, J.Y.; Keplinger, C.; Whitesides, G.M.; Suo, Z. Ionic skin. Adv. Mater. 2015, 26, 7608–7614. [Google Scholar] [CrossRef]
- Hu, W.; Niu, X.; Zhao, R.; Pei, Q. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013, 102, 083303. [Google Scholar] [CrossRef]
- Khalid, M.A.U.; Ali, M.; Soomro, A.M.; Kim, S.W.; Kim, H.B.; Lee, B.-G.; Choi, K.H. A highly sensitive biodegradable pressure sensor based on nanofibrous dielectric. Sens. Actuators A-Phys. 2019, 294, 140–147. [Google Scholar] [CrossRef]
- Chen, S.; Zhuo, B.; Guo, X. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range. ACS Appl. Mater. Interfaces 2016, 8, 20364–20370. [Google Scholar] [CrossRef]
- Choi, H.B.; Oh, J.; Kim, Y.; Pyatykh, M.; Yang, J.C.; Ryu, S.; Park, S. Transparent Pressure Sensor with High Linearity over a Wide Pressure Range for 3D Touch Screen Applications. ACS Appl. Mater. Interfaces 2020, 12, 16691–16699. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Liu, Y.; Ma, C.; Cheng, H.-C.; He, Q.; Wu, H.; Wang, C.; Lin, C.-Y.; Huang, Y.; Duan, X. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 2020, 3, 59–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Sezen, A.S.; Rajamani, R. A Low-Profile Supercapacitor-Based Normal and Shear Force Sensor. IEEE Sens. J. 2021, 21, 239–249. [Google Scholar] [CrossRef]
- Lucarotti, C.; Totaro, M.; Sadeghi, A.; Mazzolai, B.; Beccai, L. Revealing bending and force in a soft body through a plant root inspired approach. Sci. Rep. 2015, 5, 8788. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wu, Q.; Clancy, T.; Fan, Q.; Wang, X.; Liu, X. 3D-Printed Strain-Gauge Micro Force Sensors. IEEE Sens. J. 2020, 20, 6971–6978. [Google Scholar] [CrossRef]
- Singer, E.K.; Chang, L.; Calderon, A.A.; Perez-Arancibia, N.O. Clip-brazing for the design and fabrication of micronewton-resolution millimeter-scale force sensors. Smart Mater. Struct. 2019, 28, 055028. [Google Scholar] [CrossRef]
- Shi, C.; Li, M.; Lv, C.; Li, J.; Wang, S. A High-Sensitivity Fiber Bragg Grating-Based Distal Force Sensor for Laparoscopic Surgery. IEEE Sens. J. 2019, 20, 2467–2475. [Google Scholar] [CrossRef]
- Kanao, K.; Harada, S.; Yamamoto, Y.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Highly Selective Flexible Tactile Strain and Temperature Sensors against Substrate Bending for an Artificial Skin. RSC Adv. 2015, 5, 30170–30174. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S. Fabrication and Characterization of Roll-to-Roll-Coated Cantilever-Structured Touch Sensors. ACS Appl. Mater. Interfaces 2020, 12, 46797–46803. [Google Scholar] [CrossRef]
- Kim, D.S.; Choi, Y.W.; Shanmugasundaram, A.; Jeong, Y.J.; Park, J.; Oyunbaatar, N.E.; Kim, E.S.; Choi, M.; Lee, D.W. Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility. Nat. Commun. 2020, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tong, J.; Wang, L.; Cui, T. Theoretical analysis of the sensing and actuating effects of piezoelectric multimorph cantilevers. Microsyst. Technol. 2006, 12, 335–342. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 2014, 105, 151903. [Google Scholar] [CrossRef]
- Chen, B.; Bai, Y.; Xiang, F.; Sun, J.Y.; Mei Chen, Y.; Wang, H.; Zhou, J.; Suo, Z. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci. Pol. Phys. 2014, 52, 1055–1060. [Google Scholar] [CrossRef]
- Diller, E.; Zhuang, J.; Lum, G.Z.; Edwards, M.R.; Sitti, M. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 2014, 104, 174101. [Google Scholar] [CrossRef]
- Jones, L.; Lederman, S. Human Hand Function; Oxford University Press: Cambridge, MA, USA, 2006; pp. 44–74. ISBN 0195173155. [Google Scholar]
- Yang, C.C.; Lin, Y.C.; Hung, M.W.; Tsai, H.Y.; Hsiao, W.T. Force sensor fabrication by AgNWs film using 532 nm pulses laser. Appl. Surf. Sci. 2019, 484, 1019–1026. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, M.; Yu, G.; Tan, J.; Xuan, F. Extrusion printing of carbon nanotube-coated elastomer fiber with microstructures for flexible pressure sensors. Sens. Actuators A-Phys. 2019, 299, 111625. [Google Scholar] [CrossRef]
- Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Dong, H.; Zhang, W.; Xiong, J. Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 2019, 9, 3916. [Google Scholar] [CrossRef]
- Fu, S.; Tao, J.; Wu, W.; Sun, J.; Li, F.; Li, J.; Huo, Z.; Xia, Z.; Bao, R.; Pan, C. Fabrication of Large-Area Bimodal Sensors by All-Inkjet-Printing. Adv. Mater. Technol. 2019, 4, 1800703. [Google Scholar] [CrossRef]
- Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.A.; Zhu, D. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 2015, 6, 6269. [Google Scholar] [CrossRef]
- Lan, L.; Zhao, F.; Yao, Y.; Ping, J.; Ying, Y. One-Step and Spontaneous In-Situ Growth of Popcorn-like Nanostructures on Stretchable Double-Twisted Fiber for Ultra-Sensitive Textile Pressure Sensor. ACS Appl. Mater. Interfaces 2020, 165, 112360. [Google Scholar]
- Yang, T.; Xiang, H.; Qin, C.; Liu, Y.; Liu, S. Highly Sensitive 1T-MoS2 Pressure Sensor with Wide Linearity Based on Hierarchical Microstructures of Leaf Vein as Spacer. Adv. Electron. Mater. 2019, 6, 1900916. [Google Scholar] [CrossRef]
- Zhao, T.; Li, T.; Chen, L.; Yuan, L.; Li, X.; Zhang, J. Highly Sensitive Flexible Piezoresistive Pressure Sensor Developed Using Biomimetically Textured Porous Materials. ACS Appl. Mater. Interfaces 2019, 11, 29466–29473. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Mao, Y.; Zhou, Q.; Zhou, J.; Chen, G.; Gao, Y.; Tian, Y.; Wen, W.; Zhou, B. Facile Preparation of Hybrid Structure Based on Mesodome and Micropillar Arrays as Flexible Electronic Skin with Tunable Sensitivity and Detection Range. ACS Appl. Mater. Interfaces 2019, 11, 28060–28071. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xie, Y.; Zhu, E.; Liu, Y.; Shi, Z.; Xiong, C.; Yang, Q. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 2020, 8, 6311–6318. [Google Scholar] [CrossRef]
- Li, X.-P.; Li, Y.; Li, X.; Song, D.; Min, P.; Hu, C.; Zhang, H.-B.; Koratkar, N.; Yu, Z.-Z. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interf. Sci. 2019, 542, 54–62. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Filipe, C.D.M.; Ljubic, D.; Luo, Y.; Zhu, H.; Yan, J.; Zhu, S. Development of a Highly Sensitive, Broad-Range Hierarchically Structured Reduced Graphene Oxide/PoIyHIPE Foam for Pressure Sensing. ACS Appl. Mater. Interfaces 2019, 11, 4318–4327. [Google Scholar] [CrossRef] [PubMed]
- Gerovich, O.; Marayong, P.; Okamura, A.M. The effect of visual and haptic feedback on computer-assisted needle insertion. Comput. Aided Surg. 2004, 9, 243–249. [Google Scholar] [PubMed]
Number | Length (l)/mm | Width (b)/mm | Thickness (h4)/mm | Elasticity Modulus (E4)/kPa | |
---|---|---|---|---|---|
1 | 15 | 5 | 2.368 | 83 | 0.6 |
2 | 50 | 10 | 2.513 | 2653 | 0.8 |
3 | 60 | 10 | 2.408 | 2653 | 0.8 |
Refs | Types | Sensitivity | Minimum Limit of Detection |
---|---|---|---|
[36] | Capacitive | 0.1 pF·g−1 | 10 mN |
[37] | Capacitive | 0.17 kPa−1 | 8 mN |
[21] | Capacitive | – | 300 mgf |
[38] | Capacitive | 0.12 kPa−1 | 50 mgf |
[19] | Capacitive | 0.863 kPa–1 | 10 mgf |
[9] | Capacitive | 0.16 kPa–1 | 10 mgf |
[39] | Capacitive | 0.0049 kPa−1 | 1.9 mgf |
[40] | Capacitive | 193 kPa−1 | 0.3 mgf |
[41] | Piezoresistive | 0.19 kPa−1 | 93 mgf |
[42] | Piezoresistive | 1036.04 kPa–1 | 62 mgf |
[43] | Piezoresistive | 83.9 kPa−1 | 20 mgf |
[44] | Piezoresistive | 128.29 kPa−1 | 15 mgf |
[45] | Piezoresistive | 4.4 kPa−1 | 13 mgf |
[46] | Piezoresistive | 0.014 kPa−1 | 3 mgf |
[3] | Piezoresistive | 0.55 kPa−1 | 2.3 mgf |
[47] | Piezoresistive | 0.21 kPa−1 | 1.6 mgf |
[35] | Touch of fingertip (Male) | – | 0.55 mN |
[35] | Touch of fingertip (Female) | – | 0.19 mN |
This work | Capacitive | 0.29 kPa−1 | 2 mgf (0.0196 mN) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, N.; Xue, X.; Li, D. Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam. Materials 2021, 14, 1743. https://doi.org/10.3390/ma14071743
Ni N, Xue X, Li D. Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam. Materials. 2021; 14(7):1743. https://doi.org/10.3390/ma14071743
Chicago/Turabian StyleNi, Na, Xiaomin Xue, and Dongbo Li. 2021. "Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam" Materials 14, no. 7: 1743. https://doi.org/10.3390/ma14071743
APA StyleNi, N., Xue, X., & Li, D. (2021). Extra-Soft Tactile Sensor for Sensitive Force/Displacement Measurement with High Linearity Based on a Uniform Strength Beam. Materials, 14(7), 1743. https://doi.org/10.3390/ma14071743