Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys
Abstract
:1. Introduction
2. Basic Model Formulation
2.1. Balance and Basic Constitutive Relations
2.2. Local Kinematics and Elastic Energy
2.3. Dislocation Energy
2.4. Chemical Energy
2.5. Driving Forces for Solute Flux, Chemomechanical Binodal and Spinodal
3. Simplified Model for Cubic Crystals
3.1. Reduction to Cubic Symmetry
3.2. Non-Dimensional Model Relations
4. Simulation Details
4.1. Numerical Solution of Initial-Boundary-Value Problems Based on MPFCM
4.2. Simulation Set-Up
5. Results
5.1. Linear Chemoelastic Binodal and Spinodal in Defect-Free Cubic Crystals
5.2. Single Static Perfect Edge Dislocation
5.3. Low-Angle Grain Boundary
5.3.1. Tilt Boundary
5.3.2. Twist Boundary
5.4. Single Gliding Dislocation
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CH | Cahn-Hilliard |
MPFCM | Microscopic phase-field chemomechanics |
PFM | Phase-field microelasticity |
PN | Peierls-Nabarro |
PK | Piola-Kirchhoff |
LAGB | low-angle grain boundary |
References
- Cottrell, A.H.; Bilby, B.A. Dislocation Theory of Yielding and Strain Ageing of Iron. Proc. Phys. Soc. Sect. A 1949, 62, 49. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J. Theory of Dislocations, 2nd ed.; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlobes, S.; Raabe, D. Linear complexions: Confined chemical and structural states at dislocations. Science 2015, 349, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski da Silva, A.; Leyson, G.; Kuzmina, M.; Ponge, D.; Herbig, M.; Sandlöbes, S.; Gault, B.; Neugebauer, J.; Raabe, D. Confined chemical and structural states at dislocations in Fe-9wt%Mn steels: A correlative TEM-atom probe study combined with multiscale modelling. Acta Mater. 2017, 124, 305–315. [Google Scholar] [CrossRef]
- Kwiatkowski da Silva, A.; Ponge, D.; Peng, Z.; Inden, G.; Lu, Y.; Breen, A.; Gault, B.; Raabe, D. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys. Nat. Commun. 2018, 9, 1137. [Google Scholar] [CrossRef]
- Zhou, X.; Mianroodi, J.; Kwiatkowski da Silva, A.; Koenig, T.; Thompson, G.B.; Shanthraj, P.; Ponge, D.; Gault, B.; Svendsen, B.; Raabe, D. The hidden structure dependence of the chemical life of dislocations. Sci. Adv. 2021, 7. in press. [Google Scholar]
- Ma, N.; Shen, C.; Dregia, S.A.; Wang, Y. Segregation and wetting transition at dislocations. Metall. Mater. Trans. A 2006, 37A, 1773–1783. [Google Scholar] [CrossRef]
- Wang, Y.U.; Jin, Y.M.; Cutiño, A.M.; Khachaturyan, A.G. Nanoscale phase field microelasticity theory of dislocations: Model and 3D simulations. Acta Mater. 2001, 49, 1847–1857. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J. Phase field modeling of defects and deformation. Acta Mater. 2010, 58, 1212–1235. [Google Scholar] [CrossRef]
- Cahn, J.W. On spinodal decomposition. Acta Metall. 1961, 9, 795–801. [Google Scholar] [CrossRef]
- Cahn, J.W. On spinodal decomposition in cubic crystals. Acta Metall. 1962, 10, 179–183. [Google Scholar] [CrossRef]
- Khachaturyan, A.G. Theory of Structural Transformations in Solids; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Fultz, B. Phase Transitions in Materials; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Barkar, T.; Höglund, L.; Odqvist, J.; Ågren, J. Effect of concentration dependent gradient energy coefficient on spinodal decomposition in the Fe-Cr system. Comput. Mater. Sci. 2018, 143, 446–453. [Google Scholar] [CrossRef]
- Korbmacher, D.; von Pezold, J.; Brinckmann, S.; Neugebauer, J.; Hüter, C.; Spatschek, R. Modeling of phase equilibria in Ni-H: Bridging the atomistic with the continuum scale. Metals 2018, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Sadigh, B.; Erhart, P.; Stukowski, A.; Caro, A.; Martinez, E.; Zepeda-Ruiz, L. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 2012, 85, 184203. [Google Scholar] [CrossRef] [Green Version]
- Turlo, V.; Rupert, T.J. Dislocation-assisted linear complexion formation driven by segregation. Scr. Mater. 2018, 154, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Turlo, V.; Rupert, T.J. Prediction of a wide variety of linear complexions in face centered cubic alloys. Acta Mater. 2020, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, B.; Shanthraj, P.; Raabe, D. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids. J. Mech. Phys. Solids 2018, 112, 619–636. [Google Scholar] [CrossRef]
- Hunter, A.; Beyerlein, I.J.; Germann, T.C.; Koslowski, M. Influence of the stacking fault energy surface on partial dislocations in fcc metals with a three dimensional phase field dynamics model. Phys. Rev. B 2011, 84, 144108. [Google Scholar] [CrossRef]
- Hunter, A.; Zhang, R.F.; Beyerlein, I.J.; Germann, T.C.; Koslowski, M. Dependence of equilibrium stacking fault width in fcc metals on the gamma-surface. Model. Simul. Mater. Sci. Eng. 2013, 21, 025015. [Google Scholar] [CrossRef]
- Xu, S.; Smith, L.; Mianroodi, J.R.; Hunter, A.; Svendsen, B.; Beyerlein, I.J. A comparison of different continuum approaches in modeling mixed-type dislocations in Al. Model. Simul. Mater. Sci. Eng. 2019, 27, 074004. [Google Scholar] [CrossRef] [Green Version]
- Mianroodi, J.R.; Shanthraj, P.; Kontis, P.; Cormier, J.; Gault, B.; Svendsen, B.; Raabe, D. Atomistic phase field chemomechanical modeling of dislocation-solute-precipitate interaction in Ni-Al-Co. Acta Mater. 2019, 175, 250–261. [Google Scholar] [CrossRef]
- Wu, X.; Makineni, S.K.; Liebscher, C.H.; Dehm, G.; Mianroodi, J.R.; Shanthraj, P.; Svendsen, B.; Bürger, D.; Eggeler, G.; Raabe, D.; et al. Unveiling the Re effect in Ni-based single crystal superalloys. Nat. Commun. 2020, 11, 389. [Google Scholar] [CrossRef] [Green Version]
- Cahn, J.W.; Hilliard, J.E. Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- De Groot, S.; Mazur, P. Non-Equlibrium Thermodynamics; North Holland Publishers: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Lass, E.A.; Johnson, W.C.; Shiflet, G.J. Correlation between CALPHAD data and the Cahn-Hilliard gradient energy coefficient κ and exploration into its composition dependence. Comput. Couplling Phase Diagrams Thermochem. 2006, 30, 42–52. [Google Scholar] [CrossRef]
- Suzuki, H. Chemical interaction of solute atoms with dislocations. Sci. Rep. Res. Inst. Tohoku Univ. Ser. A Phys. Chem. Metall. 1952, 4, 455–463. [Google Scholar]
- Ubachs, R.L.J.M.; Schreurs, P.J.G.; Geers, M.G.D. A nonlocal di use interface model for microstructure evolution of tin-lead solder. J. Mech. Phys. Solids 2004, 52, 1763–1792. [Google Scholar] [CrossRef]
- Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabeb, D. Multi-component chemo-mechanics based on transport relations for the chemical potential. Comput. Methods Appl. Mech. Eng. 2020, 365, 113029. [Google Scholar] [CrossRef]
- Schoeck, G. The Peierls model: Progress and limitations. Mater. Sci. Eng. A 2005, 400–401, 7–17. [Google Scholar] [CrossRef]
- Dontsova, E.; Rottler, J.; Sinclair, C.W. Solute segregation kinetics and dislocation depinning in a binary alloy. Phys. Rev. B 2015, 91, 224103. [Google Scholar] [CrossRef]
- Ponga, M.; Sun, D. A unified framework for heat and mass transport at the atomic scale. Model. Simul. Mater. Sci. Eng. 2018, 26, 035014. [Google Scholar] [CrossRef] [Green Version]
- Onuki, A. Ginzburg-Landau approach to elastic effects in the phase separation of solids. J. Phys. Soc. Jpn. 1989, 58, 3065–3068. [Google Scholar] [CrossRef]
- Onuki, A. Long-range interaction through elastic fields in phase-separating solids. J. Phys. Soc. Jpn. 1989, 58, 3069–3072. [Google Scholar] [CrossRef]
- Binder, K.; Fratzl, P. Spinodal Decomposition (Ch. 6). In Material Science and Technology; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2013; Volume Fundamentals, Phase Transitions in Materials, pp. 409–480. [Google Scholar]
- Mura, T. Micromechanics of Defects in Solids; Martinus Nijhoff: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Mianroodi, J.R.; Hunter, A.; Beyerlein, I.J.; Svendsen, B. Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals. J. Mech. Phys. Solids 2016, 95, 719–741. [Google Scholar] [CrossRef] [Green Version]
- Suquet, P. Continuum Micromechanics. CISM International Center for Mechanical Sciences; Springer: Berlin, Germany, 1997; Volume 377. [Google Scholar]
- Larché, F.C.; Cahn, J.W. The interaction of composition and stress in crystalline sollids. Acta Metall. 1985, 33, 331–357. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mianroodi, J.R.; Shanthraj, P.; Svendsen, B.; Raabe, D. Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys. Materials 2021, 14, 1787. https://doi.org/10.3390/ma14071787
Mianroodi JR, Shanthraj P, Svendsen B, Raabe D. Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys. Materials. 2021; 14(7):1787. https://doi.org/10.3390/ma14071787
Chicago/Turabian StyleMianroodi, Jaber Rezaei, Pratheek Shanthraj, Bob Svendsen, and Dierk Raabe. 2021. "Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys" Materials 14, no. 7: 1787. https://doi.org/10.3390/ma14071787
APA StyleMianroodi, J. R., Shanthraj, P., Svendsen, B., & Raabe, D. (2021). Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys. Materials, 14(7), 1787. https://doi.org/10.3390/ma14071787