Research on the Grinding Energy Density in a Jet Mill
Abstract
:1. Introduction
2. A Modified Form of the Thermodynamic Theory of Grinding
3. Determination of Material Characteristics
- the surface density of the grinding energy α,
- the volumetric density of the grinding energy β.
4. Research in the Jet Mill
5. Analysis of the Obtained Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulczycka, J. Circular Economy in Politics and Research; IGSMiE PAN: Kraków, Poland, 2019; ISBN 978-83-955544-5-2. Online Version; Available online: https://min-pan.krakow.pl/wydawnictwo/en/ksiazki/gospodarka-w-obiegu-zamknietym-w-polityce-i-badaniach-naukowych/ (accessed on 10 April 2021). (In Polish)
- Alhawari, O.; Awan, U.; Bhutta, M.; Khurrum, S.; Ülkü, M.A. Insights from Circular Economy Literature: A Review of Extant Definitions and Unravelling Paths to Future Research. Sustainability 2021, 13, 859. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Cieplińska, A.; Szymanek, A. Waste anthropogenic minerals in the circular economy. J. Phys. Conf. Ser. 2019, 1398, 012003. [Google Scholar] [CrossRef]
- Zhukov, V.P.; Otwinowski, H.; Belyakov, A.N.; Wyleciał, T.; Mizonov, V.E. Boltzmann equation in the modeling of mineral processing. Arch. Min. Sci. 2015, 60, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, J.; Lyu, J.; Cao, J. Orthotropic Viscoelastic Properties of Chinese Fir Wood Saturated with Water in Frozen and Non-frozen States. For. Prod. J. 2021, 71, 77–83. [Google Scholar]
- Mayer-Laigle, C.; Blanc, N.; Rajaonarivony, K.; Rouau, X. Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour. Bioengineering 2018, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanovich, A.A.; Romanovich, L.G.; Chekhovskoy, E.I. Determination of rational parameters for process of grinding materials pre-crushed by pressure in ball mill. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 042091. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, C.; Tudor, P.; Constantin, G.-A.; Musuroi, G. Determination of granulometrical composition of the clinker by grinding in a ball mill to determine the specific consumption of additional energy. E3S Web Conf. 2020, 180, 04007. [Google Scholar] [CrossRef]
- Kamarova, S.; Abildinova, S.; Terziev, A.; Elemanova, A. The efficiency analysis of the SH-25A ball drum mill when grinding industrial products of fossil fuels. E3S Web Conf. 2020, 180, 01003. [Google Scholar] [CrossRef]
- Yin, Z.; Peng, Y.; Zhu, Z.; Yu, Z.; Li, T. Impact load behavior between different charge and lifter in a laboratory-scale mill. Materials 2017, 10, 882. [Google Scholar] [CrossRef]
- Tukarambai, M.; Hemanth Varma, M.S.; Raju, C.A.I. Batch grinding studies by a ball mill for hematite ore. Mater. Today Proc. 2020, 26, 825–832, in press, online. [Google Scholar] [CrossRef]
- Yang, J.; Shuai, Z.; Zhou, W.; Ma, S. Grinding optimization of cassiterite-polymetallic sulfide ore. Minerals 2019, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Qin, Y.; Gao, P.; Han, Y.; Li, Y. An innovative approach for determining the grinding media system of ball mill based on grinding kinetics and linear superposition principle. Powder Technol. 2021, 378, 172–181. [Google Scholar] [CrossRef]
- Bakker, J.D. Energy use of fine grinding in mineral processing. Metall. Mater. Trans. E 2014, 1, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Santosh, T.; Rahul, K.S.; Eswaraiah, C.; Rao, D.S.; Venugopal, R. Optimization of stirred mill parameters for fine grinding of PGE bearing chromite ore. Particul. Sci. Technol. 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Akkaya, B.; Toroğlu, I.; Bilen, M. Studying the effect of different operation parameters on the grinding energy efficiency in laboratory stirred mill. Adv. Powder Technol. 2020, 31, 4517–4525. [Google Scholar] [CrossRef]
- Guo, W.; Han, Y.; Gao, P.; Li, Y.; Tang, Z. Effect of feed size on residence time and energy consumption in a stirred mill: An attainable region method. Powder Technol. 2021, 379, 485–493. [Google Scholar] [CrossRef]
- Duan, J.; Lu, Q.; Zhao, Z.; Wang, X.; Zhang, Y.; Wang, J.; Li, B.; Xie, W.; Sun, X.; Zhu, X. Grinding behaviors of components in heterogeneous breakage of coals of different ash contents in a ball-and-race mill. Minerals 2020, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; He, Y.; Bi, X.; Grace, J.R.; Wang, H.; Fotovat, F.; Xie, W.; Wang, S. Effect of moisture on energy-size reduction of lignite coal in Hardgrove mill. Fuel 2020, 270, 117477. [Google Scholar] [CrossRef]
- Pareek, P.; Sankhla, V.S. Review on vertical roller mill in cement industry & its performance parameters. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Avalos, S.; Kracht, W.; Ortiz, J.M. Machine learning and deep learning methods in mining operations: A data-driven SAG mill energy consumption prediction application. Mining Metall. Explor. 2020, 37, 1197–1212. [Google Scholar] [CrossRef]
- Pamparana, G.; Kracht, W.; Haas, J.; Ortiz, J.M.; Nowak, W.; Palma-Behnke, R. Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part I: Framework, model development and effect of solar irradiance forecasting. Miner. Eng. 2019, 137, 68–77. [Google Scholar] [CrossRef]
- Pamparana, G.; Kracht, W.; Haas, J.; Ortiz, J.M.; Nowak, W.; Palma-Behnke, R. Studying the integration of solar energy into the operation of a semi-autogenous grinding mill. Part II: Effect of ore hardness variability, geometallurgical modeling and demand side management. Miner. Eng. 2019, 137, 53–67. [Google Scholar] [CrossRef]
- Behnamfard, A.; Namaei, R.D.; Veglio, F. The performance improvement of a full-scale autogenous mill by setting the feed ore properties. J. Clean. Prod. 2020, 271, 122554. [Google Scholar] [CrossRef]
- Orekhova, T.N.; Sheremet, E.O.; Kachaev, A.E. Analysis of power parameters of a rotary mill. IOP Conf. Series. Mater. Sci. Eng. 2020, 945, 012047. [Google Scholar] [CrossRef]
- Chițoiu, M.; Voicu, G.; Moiceanu, G.; Paraschiv, G.; Dinca, M.; Vladut, V.; Tudor, P. Energy consumption analysis on energetic plant biomass grinding using hammer mills. UPB Sci. Bull. Ser. D 2018, 80, 117–128. [Google Scholar]
- Eliseev, M.S.; Zagoruyko, M.G.; Rybalkin, D.A.; Leontyev, A.A.; Peretyatko, A.V. Determination of speed range of Hammer mill grinder. ARPN J. Eng. Appl. Sci. 2018, 13, 2846–2849. [Google Scholar]
- Moiceanu, G.; Paraschiv, G.; Voicu, G.; Dinca, M.; Negoita, O.; Chițoiu, M.; Tudor, P. Energy consumption at size reduction of lignocellulose biomass for bioenergy. Sustainability 2019, 11, 2477. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, J.; Barth, J.C.; Welsch, K.R.; McIntyre, V.; Wolcott, M.P. Effects of multi-stage milling method on the energy consumption of comminuting forest residuals. Ind. Crops Prod. 2020, 145, 111955. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Kasner, R.; Bałdowska-Witos, P.; Flizikowski, J.; Tomporowski, J. The integrated energy consumption index for energy biomass grinding technology assessment. Energies 2020, 13, 1417. [Google Scholar] [CrossRef] [Green Version]
- Bulgakov, V.; Pascuzzi, S.; Ivanovs, S.; Kaletnik, G.; Yanovich, V. Angular oscillation model to predict the performance of a vibratory ball mill for the fine grinding of grain. Biosyst. Eng. 2018, 171, 155–164. [Google Scholar] [CrossRef]
- Mayer-Laigle, C.; Blanc, N.; Rajaonarivony, K.; Rouau, X. Comminution of Dry Lignocellulosic Biomass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. Bioengineering 2018, 5, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumuluru, J.S.; Heikkila, D.J. Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering 2019, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogonowski, S.; Ogonowski, Z.; Pawełczyk, M. Multi-Objective and Multi-Rate Control of the Grinding and Classification Circuit with Electromagnetic Mill. Appl. Sci. 2018, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Rittinger, P.R. Lehrbuch der Aufbereitungskunde in Ihrer Neuesten Entwicklung und Ausbildung; Ernst und Korn: Berlin, Germany, 1867. [Google Scholar]
- Kick, F. Contributions to the knowledge of the mechanics of brittle materials. Dinglers Polytech. J. 1883, 247, 1–5. [Google Scholar]
- Kick, F. The law of proportional resistances and its application to pressure in sand and explosions. Dinglers Polytech. J. 1883, 250, 141–145. [Google Scholar]
- Kick, F. Das Gesetz der Proportionalen Widerstände und Seine Anwendun; A. Felix: Leipzig, Germany, 1885. [Google Scholar]
- Bond, F.C. The third theory of comminution. AIME Trans. 1952, 193, 484–494. [Google Scholar]
- Bond, F.C. Confirmation of the third theory. AIME Trans. 1960, 217, 139–153. [Google Scholar]
- Bond, F.C. Crushing and Grinding Calculations; Allis-Chalmers Publications: Milwaukee, WI, USA, 1962. [Google Scholar]
- Charles, R.J. High velocity impact in comminution. Min. Eng. 1956, 8, 1028–1032. [Google Scholar]
- Charles, R.J.; Bruyn, P.L. Energy transfer by impact. Trans. AIME. 1956, 205, 48–53. [Google Scholar]
- Charles, R.J. Energy-size reduction relationships in comminution. Min. Eng. 1957, 9, 80–88. [Google Scholar]
- Djingheuzian, L.E. A study of present day grinding. Can. Min. Metall. Bull. 1949, 42, 243–257. [Google Scholar]
- Djingheuzian, L.E. A Study of Operating Data from Ball Mills Operating in Quebec, Ontario, Manitoba and British Columbia. Can. Min. Metall. Bull. 1957, 50, 504–508. [Google Scholar]
- Djingheuzian, L.E. The influence of temperature on efficiency of grinding. Can. Min. Metall. Bull. 1954, 47, 157–168. [Google Scholar]
- Guillot, R. Le Problème du Broyage et Son Evolution; Edit Gauthier: Villars, Switzerland, 1960. [Google Scholar]
- Mielczarek, E. Free Comminution of Brittle Solid Substances; Czestochowa University of Technology Press: Czestochowa, Poland, 1982. (In Polish) [Google Scholar]
- Mielczarek, E. Particle size distribution of free comminution product. Arch. Min. Sci. 1984, 29, 29–56. (In Polish) [Google Scholar]
- Stamboliadis, E.T. A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials. Miner. Eng. 2002, 15, 707–713. [Google Scholar] [CrossRef]
- Jung, H.; Lee, Y.J.; Yoon, W.B. Effect of Moisture Content on the Grinding Process and Powder Properties in Food. A Review. Processes 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Hukki, R.T. Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond. Trans. AIME 1961, 220, 403–408. [Google Scholar]
- Rumpf, H. Physical aspects of comminution and new formulation of a law of comminution. Powder Technol. 1973, 7, 145–159. [Google Scholar] [CrossRef]
- Duroudier, J.P. Size Reduction of Divided Solids; Elsevier: London, UK, 2016. [Google Scholar]
- Jiang, S.; Tang, C.; Li, X.; Tan, Y.; Peng, R.; Yang, D.; Liu, S. Discrete element modeling of the machining processes of brittle materials: Recent development and future prospective. Int. J. Adv. Manuf. Technol. 2020, 109, 2795–2829. [Google Scholar] [CrossRef]
- Zawada, J. Introduction to the Mechanics of Crushing Processes; Publishing and Printing House of the Institute for Sustainable Technologies: Radom, Poland, 1998. (In Polish) [Google Scholar]
- Griffith, A.A. The phenomena of Rupture and Flow in Solid. Phil. Trans. Roy. Soc. 1928, A221, 163–197. [Google Scholar]
- Mielczarek, E. Characteristic solid of the unit energy consumption of grinding. Arch. Mech. Eng. 1982, 29, 143–151. [Google Scholar]
- Górecka-Zbrońska, A.; Otwinowski, H.; Zbroński, D. Research on the Single Impact Comminution Mechanism of Quartz Sand in the Jet Mill. Powder Handl. Process. 2003, 15, 96–100. [Google Scholar]
- Urbaniak, D. Determination of the free energy intensity of free grinding of brittle materials. Sci. Work. Wars. Univ. Technol. Conf. 2002, 4, 1283–1290. [Google Scholar]
- Urbaniak, D.; Wyleciał, T. Mechanical Activation in Energy Processes. Chem. Process Eng. 2010, 31, 647–659. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbaniak, D.; Otwinowski, H.; Wyleciał, T.; Zhukov, V.P.; Barochkin, A.Y.; Boryca, J. Research on the Grinding Energy Density in a Jet Mill. Materials 2021, 14, 2008. https://doi.org/10.3390/ma14082008
Urbaniak D, Otwinowski H, Wyleciał T, Zhukov VP, Barochkin AY, Boryca J. Research on the Grinding Energy Density in a Jet Mill. Materials. 2021; 14(8):2008. https://doi.org/10.3390/ma14082008
Chicago/Turabian StyleUrbaniak, Dariusz, Henryk Otwinowski, Tomasz Wyleciał, Vladimir Pavlovich Zhukov, Aleksei Yevgenyevich Barochkin, and Jarosław Boryca. 2021. "Research on the Grinding Energy Density in a Jet Mill" Materials 14, no. 8: 2008. https://doi.org/10.3390/ma14082008
APA StyleUrbaniak, D., Otwinowski, H., Wyleciał, T., Zhukov, V. P., Barochkin, A. Y., & Boryca, J. (2021). Research on the Grinding Energy Density in a Jet Mill. Materials, 14(8), 2008. https://doi.org/10.3390/ma14082008