Petrographic and Geotechnical Characteristics of Carbonate Aggregates from Poland and Their Correlation with the Design of Road Surface Structures
Abstract
:1. Introduction
1.1. The Study in a Broad Context
1.2. Design of Road Surface Structures with Application of Carbonate Aggregates
- E′—real part (elastic),
- E″—imaginary part (viscose).
- φ—phase angle.
1.3. The Main Aim of the Work
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Petrographic Analysis
- Optical Microscopy
- Scanning Electron Microscopy (SEM);
2.2.2. Engineering Analyses
- Geotechnical Parameters;
- Resistance to Crushing after Saturation with Water and NaCl Solutions;
2.2.3. Examination of Asphalt Concrete (AC)
- Stiffness Module;
- Fatigue Durability;
2.2.4. Statistical Analysis
3. Results
3.1. Petrography
3.1.1. Dolomite
- -
- mostly crystalline with variable crystal size;
- -
- crystals are mostly 10 to 30 µm in size, sometimes smaller or larger, but always above 4 µm, which points to sparite (dolosparite),
- -
- numerous fractures—veins filled with calcite (wider) and iron compounds (narrower),
- -
- relics of calcite crystals coated with developing dolomitization.
- -
- dolomitization processes may be observed within individual dolomite crystals,
- -
- a lighter crust occurs around the crystals; it is not porous and does not contain white patches, considered as relics of the limestone rock,
- -
- the crystal center is clearly darker colored, with white patches and porous,
- -
- intercrystalline pores ranging in size from 10 to 20 µm are sporadic and intracrystalline pores ranging from 3 to 0.5 µm are more common in the center of the crystals; the pores are not in hydraulic contact with each other,
- -
- numerous regular and irregular caverns are filled with secondary mineralization,
- -
- fractures are common—veins filled with calcite mineralization,
- -
- lighter colored patches—limestone relics—occur in a darker dolomite matrix,
- -
- dolomitization reflected as autigenic dolomite crystals is visible against lighter colored calcite crystals.
3.1.2. Limestone
3.2. Geotechnical Properties
3.2.1. Bulk Density (ρa)
3.2.2. Water Adsorption (WA24)
3.2.3. Los Angeles Coefficient (LA)-Resistance to Fragmentation
3.2.4. Freezing–Thawing Resistance (F)
3.2.5. Crushing Strength (Xr), Crushing Strength after Soaking (Xm) and Decrease of Strength (Xs)
3.2.6. Crushing Strength after Saturation with Water and NaCl Solutions
3.3. Relationships
3.4. Asphalt Concrete (AC)
4. Discussion
4.1. Petrography
4.2. Geotechnical Properties
4.3. Correlation
4.4. Asphalt Concrete (AC)
5. Conclusions
- (1)
- Statistical analysis showed significant relationships between the physical and mechanical parameters and the resistance to crushing and freezing–thawing, which is particularly visible in the case of limestone aggregates.
- (2)
- The crushing strength of dolomite aggregates after saturation with salt solutions decreases due to deterioration processes.
- (3)
- The crushing strength of limestone aggregates after saturation with salt solutions increases as a result of salt crystallization.
- (4)
- Calculations of the durability of the road pavement showed its significant increase in the case of WMS mixtures.
- (5)
- The ACs fatigue durability and deformation calculations allow the thickness of the AC WMS pavement structure to be reduced by about 20%.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turk, N.; Dearman, W.R. An investigation into the influence of size on the mechanical properties of aggregates. Bull. Int. Assoc. Eng. Geol. 1988, 38, 143–149. [Google Scholar] [CrossRef]
- Sybilski, D.; Bańkowski, W.; Krajewski, M. High Modulus asphalt concrete with limestone aggregate. Int. J. Pavement Res. Technol. 2010, 3, 96–101. [Google Scholar]
- Erichsen, E.; Ulvik, A.; Sævik, K. Mechanical degradation of aggregate by the los angeles-, the micro-deval- and the nordic test methods. Rock Mech. Rock Eng. 2011, 44, 333. [Google Scholar] [CrossRef]
- Nagrockienė, D.; Skripkiūnas, G.; Girskas, G. Predicting frost resistance of concrete with different coarse aggregate concentration by porosity parameters. Mater. Sci. 2011, 17, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, Y. Predicting Los Angeles abrasion of rocks from some physical and mechanical properties. Sci. Res. Essays 2011, 6, 1612–1619. Available online: http://www.academicjournals.org/SRE (accessed on 1 March 2021). [CrossRef]
- Perras, M.A.; Diederichs, M.S. The importance of classification for carbonates and mudrocks in engineering. In Proceedings of the 2011 Pan-Am Canadian Geotechnical Conference, Toronto, ON, Canada, 2–6 October 2011. [Google Scholar]
- Palassi, M.; Danesh, A. Relationships between abrasion/degradation of aggregate evaluated from various tests and the effect of saturation. Rock Mech. Rock Eng. 2016, 49, 2937–2943. [Google Scholar] [CrossRef]
- Šernas, O.; Vorobjovas, V.; Šneideraitiene, L.; Vaitkus, A. Evaluation of asphalt mix with dolomite aggregates for wearing layer. Transp. Res. Procedia 2016, 14, 732–737. [Google Scholar]
- Wyszomirski, P.; Szydłak, T.; Pichniarczyk, P. Charakterystyka surowcowa wybranych kruszyw mineralnych NE Polski w aspekcie trwałości betonów. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią Polskiej Akad. Nauk. 2016, 96, 363–378. [Google Scholar]
- Ostrowski, K.; Sadowski, Ł.; Stefaniuk, D.; Wałach, D.; Gawenda, T.; Oleksik, K.; Usydus, I. The effect of the morphology of coarse aggregate on the properties of self-compacting high-performance fibre-reinforced concrete. Materials 2018, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, B.; Mao, Z.; Deng, M. The expansion cracks of dolomitic aggregates cured in tmah solution caused by alkali–carbonate reaction. Materials 2019, 12, 1228. [Google Scholar] [CrossRef] [Green Version]
- Góralczyk, S.; Filipczyk, M. The quality of Polish aggregates based on selected physicomechanical properties. Minerals 2018, 8, 577. [Google Scholar]
- Kamani, M.; Ajalloeian, R. Evaluation of the mechanical degradation of carbonate aggregate by rock strength tests. J. Rock Mech. Geotech. Eng. 2019, 11, 121–134. [Google Scholar] [CrossRef]
- Badouna, I.; Koutsovitis, P.; Karkalis, C.; Laskaridis, K.; Koukouzas, N.; Tyrologou, P.; Patronis, M.; Papatrechas, C.; Petrounias, P. Petrological and geochemical properties of greek carbonate stones, associated with their physico-mechanical and aesthetic characteristics. Minerals 2020, 10, 507. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Q.; Lou, N.; Luo, S. Microstructural characteristics of interfacial zone in asphalt mixture considering the influence of aggregates properties. Materials 2020, 13, 2558. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, T.; Li, K. Development and investigation of a new low-cement-consumption concrete—Preplaced aggregate concrete. Sustainability 2020, 12, 1080. [Google Scholar] [CrossRef] [Green Version]
- Lamar, J.E. Uses of Limestone and Dolomite. Division of the Illinois State Geological Survey. 1961 Chief: John, C.; Frye, URBANA CIRCULAR 321. Available online: https://core.ac.uk/download/pdf/10208934.pdf (accessed on 10 March 2021).
- Pétursson, P.; Schouenborg, B. Frost resistance test on aggregates with and without salt (FRAS) (NT TR 566). Draft Rep. Nord. Proj. 2004, 1624-03. Available online: http://www.nordtest.info/wp/2004/11/28/frost-resistance-test-on-aggregates-with-and-without-salt-fras-nt-tr-566/ (accessed on 6 March 2021).
- Cinere, E. Limiting Consumption of Natural Minerals by Developing Innovative Coarse-Grained Hot Mix Asphalts, Including Those with High Stiffness Moduli, Together with Recommendations for Their Production; NCBiR: Warszawa, Poland, 2017–2021; Umowa numer POIR.01.01.01-00-1069/17-00. [Google Scholar]
- Bańkowski, W. Characteristics of Properties and the Use of Asphalt Concrete with a High Modulus of Stiffness in the Structure; Instytut Badawczy Dróg i Mostów, Branżowy Ośrodek Informacji Naukowej, Technicznej i Ekonomicznej Drogownictwa: Warszawa, Poland, 2019; ISSN 0239-8575. ISBN 978-83-89252-27-2. [Google Scholar]
- Available online: http://emgsp.pgi.gov.pl/raporty (accessed on 10 March 2021).
- Kozioł, W.; Baic, I. Natural aggregates in Poland—Current condition and the future. Przegląd Górniczy 2018, Nr 11, Tom 74, 1–8. (In Polish) [Google Scholar]
- Kozioł, W.; Czaja, P. Rock mining in Poland—Present situation, perspectives and conditions of development. Górnictwo I Geol. 2010, 5, 41–58. (In Polish) [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P.; Buła, Z.; Karnkowski, P.; Konon, A.; Oszczypko, N.; Ślączka, A.; Żaba, J.; Żytko, K. Tectonic Subdivision of Poland; Kom. Nauk. Geol. PAN: Wrocław, Poland, 2011; ISBN 978-83-63377-01-4. [Google Scholar]
- Filonowicz, P. Detailed Geological Map of Poland 1:50,000 (SMGP), Sheet 851 Morawica; Wydawnictwa Geologiczne: Warszawa, Poland, 1968. [Google Scholar]
- Filonowicz, P. Explanations to the Detailed Geological Map of Poland 1:50,000 Sheet 851 Morawica; Wydawnictwa Geologiczne: Warszawa, Poland, 1968. [Google Scholar]
- Hakenberg, M. Detailed Geological Map of Poland 1:50,000 (SMGP), Sheet 850 Chęciny; Wydawnictwa Geologiczne: Warszawa, Poland, 1971. [Google Scholar]
- Hakenberg, M. Explanations to the Detailed Geological Map of Poland 1:50,000 Sheet 850 Chęciny; Wydawnictwa Geologiczne: Warszawa, Poland, 1974. [Google Scholar]
- Narkiewicz, M. Mesogenetic dolomityzation in the Givetian to Frasnian of the Holy Cross Mountains, Poland. Bull. Pol. Acad. Sci. Earth Sci. 1990, 38, 1–4. [Google Scholar]
- Migaszewski, Z. Devonian dolomites from the Holy Cross Mts, Poland: A new concept of the origin of massive dolomites based on petrographic and isotopic evidence. J. Geol. 1991, 99, 171–187. [Google Scholar] [CrossRef]
- Marynowski, L.; Narkiewicz, M.; Grelowski, C. Biomarkers as environmental indicators in a carbonate complex, example from the Middle to Upper Devonian, Holy Cross Mountains, Poland. Sediment. Geol. 2000, 137, 187–212. [Google Scholar] [CrossRef]
- Narkiewicz, M. Late burial dolomitization of the devonian carbonates and a tectonothermal evolution of the Holy Cross Mts area (Central Poland). Mineral. Spec. Pap. 2009, 35, 51–59. [Google Scholar]
- Available online: https://lafarge.pl (accessed on 30 April 2020).
- Available online: https://www.kieruneksurowce.pl (accessed on 30 April 2020).
- Uniejewska, M.; Nosek, M. Detailed Geological Map of Poland 1:50,000 (SMGP), Sheet 358 Łabiszyn; Państwowy Instytut Geologiczny: Warszawa, Poland, 1988. [Google Scholar]
- Uniejewska, M.; Nosek, M. Explanations to the Detailed Geological Map of Poland 1:50,000, Sheet 358 Łabiszyn; Państwowy Instytut Geologiczny: Warszawa, Poland, 1992. [Google Scholar]
- Uniejewska, M.; Nosek, M. Detailed Geological Map of Poland 1:50,000 (SMGP), Sheet 398 Gąsawa; Państwowy Instytut Geologiczny: Warszawa, Poland, 1989. [Google Scholar]
- Uniejewska, M.; Nosek, M. Explanations to the Detailed Geological Map of Poland 1:50,000 Sheet 398 Gąsawa; Państwowy Instytut Geologiczny: Warszawa, Poland, 1993. [Google Scholar]
- Polish Committee for Standardization. PN-EN 1097-6: 2002. Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption; Polish Committee for Standardization: Warszawa, Poland, 2002. (In Polish)
- Polish Committee for Standardization. PN-EN 1097-2: 2000, Tests for Mechanical and Physical Properties of Aggregates—Part 2: Methods for the Determination of Resistance to Fragmentation; Polish Committee for Standardization: Warszawa, Poland, 2000. (In Polish)
- PB-04 A. Determination of Resistance to Crushing, Research Procedure of Eko Cinere; Eko Cinere: Białystok, Poland, 2020. [Google Scholar]
- Polish Committee for Standardization. PN-B-06714/40:1978, Mineral Aggregates—Testing—Determination of Crushing Strength; Polish Committee for Standardization: Warszawa, Poland, 1978. (In Polish)
- Polish Committee for Standardization. PN-EN 1367-1:2001, Tests for Thermal and Weathering Properties of Aggregates—Part 1: Determination of Resistance to Freezing and Thawing; Polish Committee for Standardization: Warszawa, Poland, 2001. (In Polish)
- Polish Committee for Standardization. PN-EN 13043:2004, Aggregates for Bituminous Mixtures and Surface Treatments, Used on Roads, Airports and Other Surfaces Intended for Traffic; Polish Committee for Standardization: Warszawa, Poland, 2004. (In Polish)
- WT-1. 2014 Aggregates, Technical Requirements; General Directorate for National Roads and Motorways: Warszawa, Poland, 2014. (In Polish) [Google Scholar]
- Załącznik do zarządzenia Nr 46 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 25.09.2014 r., Kruszywa do mieszanek mineralno-asfaltowych i powierzchniowych utrwaleń na drogach krajowych WT-1 2014, Kruszywa Wymagania Techniczne, Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, Poland 2014. Available online: https://www.gddkia.gov.pl/userfiles/articles/z/zarzadzenia-generalnego-dyrektor_13901/zarzadzenie%2046.PDF (accessed on 10 March 2021).
- Polish Committee for Standardization. PN-EN 12697-26. Bituminous mixtures. Test Methods. Part 26: Stiffness; Polish Committee for Standardization: Warszawa, Poland, 2018. (In Polish)
- WT-2. 2014 Aggregates, Technical Requirements; General Directorate for National Roads and Motorways: Warszawa, Poland, 2014. (In Polish) [Google Scholar]
- Polish Committee for Standardization. PN-EN 13108-1:2008. Bituminous Mixtures—Requirements—Part 1: Asphalt Concrete; Polish Committee for Standardization: Warszawa, Poland, 2008. (In Polish)
- MWS Pavement Design ver. 1.0.0.12. Nascon sp. z o.o. Program do obliczeń trwałości zmęczeniowej nawierzchni drogowych. 2012. Available online: https://www.nascon.pl/program-do-projektowania-drog/ (accessed on 15 January 2019).
- Catalogue of Typical Constructions of Susceptible and Semi-stiff Road Surfaces; Generalna Dyrekcja Dróg Krajowych i Autostrad: Warszawa, Poland, 2014.
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Microfacies Analysis of Limestones; Ham, W.E., Ed.; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; A.A.P.G. Memoir, 1; pp. 62–84, 108–121. [Google Scholar]
- Folk, R.L. Practical petrographic classification of limestones. Bull. Am. Assoc. Pet. Geol. 1959, 43, 1–38. [Google Scholar]
- Folk, R.L. Spectral subdivision of limestone types. In Classification of Carbonate Rocks; Ham, W.E., Ed.; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; pp. 62–84. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Polish Committee for Standardization. PN-EN 12620:2004 Aggregates for Concrete; Polish Committee for Standardization: Warszawa, Poland, 2004. (In Polish)
- Wiszniakow, S.G. Genieticzeskije tipy dolomitowych porod siewiero-zapadnoj okrainy russkoj platformy, Tr. Geoł. Inst. Academy of Sciences. Moskwa, SSSR, wyp. 4. Tipy dolomitowych porod i ich genezis. 1956; 209–254. [Google Scholar]
- Pettijohn, F.J. Sedimentary Rocks, 3rd ed.; Harper & Row: Manhattan, NY, USA, 1975. [Google Scholar]
- Vierek, A. Characteristics and genesis of carbonate interformation agglomerates. Przegląd Geol. 2006, 54, 1037–1043. (In Polish) [Google Scholar]
- Grim, R.E.; Lamar, J.E.; Bradley, W.F. The clay minerals in illinois limestones and dolomites. J. Geol. 1937, 45, 8. [Google Scholar] [CrossRef]
- Lemish, J.; Rush, F.E.; Hiltrop, C.L. Relationship of Physical Properties of Some Iowa Carbonate Aggregates to Durability of Concrete. Highw. Res. Board Bull. 1958, 1–16. Available online: http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/196/196-001.pdf (accessed on 18 February 2021).
- Gillott, J.E.; Swenson, E.G. Mechanism of the alkali-carbonate rock reaction. Q. J. Eng. Geol. Hydrogeol. 1969, 2, 7–23. [Google Scholar] [CrossRef]
- Rajabzadeh, M.A.; Moosavinasab, Z.; Rakhshandehroo, G. Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mech. Rock Eng. 2012, 45, 113–122. [Google Scholar] [CrossRef]
- Pappalardo, G. Correlation between p-wave velocity and physical–Mechanical properties of intensely jointed dolostones, peloritani mounts, NE sicily. Rock Mech. Rock Eng. 2015, 48, 1711–1721. [Google Scholar] [CrossRef]
- Jamroży, Z. Concrete and Its Technologies; Wydawnictwo Naukowe PWN SA: Warszawa, Poland, 2015; ISBN 978-83-01-18210-6. [Google Scholar]
- Góralczyk, S.; Kukielska, D. The quality of Polish aggregates. Górnictwo Geoinżynieria 2010, 34, 211–224. (In Polish) [Google Scholar]
- Pearce, M.A.; Timms, N.E.; Hough, R.M.; Cleverley, J.S. Reaction mechanism for the replacement of calcite by dolomite and siderite: Implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralization. Contrib. Miner. Pet. 2013, 166, 995–1009. [Google Scholar] [CrossRef] [Green Version]
Parameter | Dolomite Aggregate | Limestone Aggregate | |
---|---|---|---|
Bulk density ρa (Mg/m3) | min | 2.73 | 2.70 |
max | 2.92 | 2.73 | |
mean | 2.81 | 2.71 | |
sd | 0.02 | 0.01 | |
Water adsorption WA24 (%) | min | 0.59 | 1.10 |
max | 1.50 | 3.90 | |
mean | 0.93 | 1.68 | |
sd | 0.15 | 0.48 | |
Los Angeles coefficient LA (-) | min | 18.00 | 27.00 |
max | 27.10 | 34.00 | |
mean | 21.42 | 29.60 | |
sd | 2.00 | 1.54 | |
Freeze-thaw resistance F (%) | min | 0.20 | 0.60 |
max | 2.00 | 5.90 | |
mean | 0.62 | 1.66 | |
sd | 0.35 | 0.80 | |
Crushing strength Xr (%) | min | 7.90 | 8.95 |
max | 19.35 | 19.96 | |
mean | 10.86 | 13.88 | |
sd | 2.14 | 1.93 | |
Crushing strength after soaking Xm (%) | min | 5.10 | 7.97 |
max | 13.10 | 22.45 | |
mean | 9.13 | 15.49 | |
sd | 1.32 | 2.16 | |
Decrease of strength Xs (%) | min | 1.09 | −91.28 |
max | 49.29 | 45.71 | |
mean | 14.67 | −12.81 | |
sd | 10.57 | 17.26 |
Carbonate Aggregate | Lower Size/Upper Size | Crushing Strenght (%) | |||
---|---|---|---|---|---|
Xr | Xm after Soaking in H2O | Xm NaCl2 after Soaking in 2% NaCl | Xm NaCl7 after Soaking in 7% NaCl | ||
Dolomite | 4/8 | 6.1 | 16.4 | 13.5 | 11.2 |
8/16 | 7.0 | 12.7 | 8.2 | 6.0 | |
16/22 | 12.8 | 14.3 | 12.4 | 11.4 | |
Limestone | 4/8 | 7.8 | 8.6 | 8.6 | 7.1 |
8/16 | 12.0 | 10.3 | 10.3 | 7.9 | |
16/22 | 16.1 | 11.5 | 11.7 | 11.2 |
Correlations | Correlation Coefficient | |||
---|---|---|---|---|
Dolomite | Limestone | |||
R1 | R2 | R1 | R2 | |
Xr/ρa | −0.35 | 0.91 | −0.14 | −0.66 |
Xr/LA | 0.37 | 0.35 | 0.19 | 0.94 |
Xr/WA24 | 0.004 | 0.06 | 0.23 | 0.71 |
Xm/WA24 | 0 | 0.06 | 0.41 | 0.81 |
F/WA24 | 0.27 | 0.54 | 0.78 | 0.94 |
F/LA | 0.30 | 0.24 | 0.30 | 0.80 |
Type of Asphalt Concrete | Stiffness Module E* (MPa) | |
---|---|---|
Dolomite Aggregate | Limestone Aggregate | |
AC 16 P | 15,499 | 13,219 |
13,580 | 11,665 | |
- | 11,341 | |
AC 16 W | 14,656 | 13,679 |
15,101 | 12,581 | |
12,119 | 12,804 | |
AC HSM 16 P | - | 13,242 |
AC HSM 16 P/W | 15,701 | 14,270 |
14,546 | - | |
FB AC HSM 16 P | - | 12,553 |
FB AC HSM 16 P/W | 14,101 | - |
AC 22 P | 12,665 | 13,084 |
11,247 | 13,671 | |
11,381 | 11,297 | |
AC 22 W | 13,311 | 13,462 |
12,537 | 14,109 | |
12,208 | 12,033 | |
AC HSM 22 P | 13,616 | 13,002 |
AC HSM 22 P/W | 14,982 | 14,047 |
14,407 | - | |
FB AC HSM 22 P | - | 13,091 |
FB AC HSM 22P/W | 14,340 | - |
Carbonate Aggregate | Type of Asphalt Concrete | Fatigue Durability (Axel 100 kN/Line/20 Years) | Thickness of Road Structure (cm) |
---|---|---|---|
Dolomite | AC HSM 16 | 435,773,372 1 | 50 1 |
76,602,819 2 | 44 2 | ||
AC HSM 22 | 391,186,346 | 50 | |
66,071,240 | 44 | ||
AC HSM 32 | 289,556,405 | 50 | |
69,621,783 | 45 | ||
Limestone | AC HSM 16 | 350,090,065 | 50 |
59,983,402 | 44 | ||
AC HSM 22 | 217,260,948 | 50 | |
59,791,915 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzciński, J.; Wójcik, E.; Marszałek, M.; Łukaszewski, P.; Krajewski, M.; Styk, S. Petrographic and Geotechnical Characteristics of Carbonate Aggregates from Poland and Their Correlation with the Design of Road Surface Structures. Materials 2021, 14, 2034. https://doi.org/10.3390/ma14082034
Trzciński J, Wójcik E, Marszałek M, Łukaszewski P, Krajewski M, Styk S. Petrographic and Geotechnical Characteristics of Carbonate Aggregates from Poland and Their Correlation with the Design of Road Surface Structures. Materials. 2021; 14(8):2034. https://doi.org/10.3390/ma14082034
Chicago/Turabian StyleTrzciński, Jerzy, Emilia Wójcik, Mateusz Marszałek, Paweł Łukaszewski, Marek Krajewski, and Stanisław Styk. 2021. "Petrographic and Geotechnical Characteristics of Carbonate Aggregates from Poland and Their Correlation with the Design of Road Surface Structures" Materials 14, no. 8: 2034. https://doi.org/10.3390/ma14082034
APA StyleTrzciński, J., Wójcik, E., Marszałek, M., Łukaszewski, P., Krajewski, M., & Styk, S. (2021). Petrographic and Geotechnical Characteristics of Carbonate Aggregates from Poland and Their Correlation with the Design of Road Surface Structures. Materials, 14(8), 2034. https://doi.org/10.3390/ma14082034