Applications of Ceramic/Graphene Composites and Hybrids
Abstract
:1. Introduction
- 2.
- Ceramic/graphene composites used in energy production and storage
- 3.
- Piezo and thermoelectric ceramic/graphene composites for energy harvesting
- 4.
- Sensors based on ceramic/graphene composites and hybrids
- 5.
- Ceramic/graphene composites for electromagnetic interference shielding
- 6.
- Catalytic applications of ceramic/graphene composites
- 7.
- Ceramic/graphene composites in biomedicine
- 8.
- Thermal applications of ceramic/graphene composites
- 9.
- Structural engineering applications of ceramic/graphene composites
- 10.
- Applications of additively-manufactured ceramic/graphene composites
2. Ceramic/Graphene Composites Used in Energy Production and Storage
2.1. Batteries
2.1.1. Cathodes
2.1.2. Anodes
Si-Based Anodes
TMO-Based Anodes
2.1.3. Ceramic Electrolytes
2.2. Supercapacitors
2.3. Solar Cells
2.3.1. Dye-Sensitized Solar Cells
2.3.2. Perovskite Solar Cells
2.4. Fuel Cells
Cell Type | Cell Component | Composite | Jsc (mA⋅cm−2) | Voc (V) | FF (Ratio or %) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|
DSSC | Photoanode | GO/Nb2O5 | 0.363 | 0.196 | 0.42 | 0.11 | [75] |
DSSC | Photoanode | GO-CNTs/ZnO nr | 17.6 | 0.63 | 0.35 | 7.73 | [63] |
DSSC | Photoanode | rGO/TiO2 | 16.27 | 0.59 | 71.85 | 6.90 | [61] |
DSSC | Photoanode | rGO/TiO2 | 15.06 | 0.715 | 0.68 | 7.58 | [60] |
DSSC | Photoanode | GNP/SnO2-TiO2 | 9.03 | 0.65 | 0.58 | 3.37 | [62] |
DSSC | Photoanode | G/ZnAl-MMO | 3.62 | 0.36 | 0.39 | 0.51 | [76] |
DSSC | Photoanode | GO/ZnAl-MMO | 4.46 | 0.37 | 0.34 | 0.55 | [77] |
DSSC | CE | rGO/CoS2 | 16.35 | 0.702 | 0.67 | 7.69 | [78] |
DSSC | CE | G/NiSe | 16.32 | 0.75 | 0.61 | 7.47 | [79] |
DSSC | CE | G/NiCo2S4 | 15.62 | 0.72 | 70.5 | 7.98 | [80] |
DSSC | CE | GO/CoFeS2 | 15.85 | 0.78 | 0.71 | 8.82 | [81] |
DSSC | CE | rGO/MoSe2 | 17.75 | 0.76 | 0.616 | 7.83 | [59] |
DSSC | CE | rGO/CoSe2 | 12.24 | 0.792 | 0.72 | 7.01 | [65] |
DSSC | CE | nr GO-MWCNT/Co3O4 | 17.09 | 0.75 | 65.7 | 8.42 | [64] |
PDSSC | Photoanode | rGO-Ag np/TiO2 | 14.08 | 0.73 | 66.35 | 6.87 | [82] |
QDSSC | Photoanode | GQD/C-ZnO nr | 1.84 | 360 | 45.28 | 0.293 | [83] |
PSC | HTL | rGO/CZTS0.5Se0.5 | 17.43 | 0.917 | 63.07 | 10.18 | [68] |
PSC | ETL | rGO/SnO2/AZO | 22.57 | - | 73 | 16.87 | [58] |
PSC | ETL | N-G/ZnO nr | 21.98 | 1.02 | 75 | 16.82 | [73] |
PSC | Composite active layer | rGO-CuInS2 QD/MAPbI3 | 21.4 | 1.05 | 0.76 | 17.1 | [71] |
PSC | Composite active layer | rGO-Ag/MAPBI3-xClx | 23.5 | 0.929 | 73.75 | 16.1 | [70] |
2.4.1. Proton Exchange Membrane Fuel Cells
2.4.2. Direct Alcohol Fuel Cells
2.4.3. Microbial Fuel Cells
2.4.4. Solid Oxide Fuel Cells
3. Piezo and Thermoelectric Ceramic/Graphene Composites for Energy Harvesting
3.1. Piezoelectric Energy Harvesting
3.1.1. Ceramic/Graphene Composites
3.1.2. Polymer/Ceramic/Graphene Composites Based Composites
3.2. Thermoelectric and Pyroelectric Materials
3.2.1. Thermoelectric Energy Harvesting
3.2.2. Pyroelectric Energy Harvesting
4. Sensors Based on Ceramic/Graphene Composites and Hybrids
4.1. MOX Semiconductor–Graphene Type Sensors
4.1.1. SnO2/rGO Sensors
4.1.2. WO3/rGO Sensors
4.1.3. In2O3/rGO Sensors
4.1.4. ZnO/Graphene or GO Sensors
4.1.5. CuO/rGO Sensors
4.1.6. Fe2O3/GO Sensors
4.2. Other Ceramic/Graphene Hybrid Sensors
4.2.1. Al2O3/Graphene Sensor
4.2.2. BaTiO3/rGO Sensor
4.2.3. MnO2/CNT/Graphene Sensor
4.3. Ceramic/Graphene Bio-Sensors for Virus Detection
5. Ceramic/Graphene Composites for Electromagnetic Interference Shielding
5.1. Ceramic/Graphene Composites Sintered by SPS and HP
5.2. Ceramic/Graphene Composites Synthesized from Precursors
5.3. Ceramic/Graphene Hierarchical Light Structures
Filler | Filler Content | Ceramics | Thickness (mm) | σ (S·m−1) | EMI SE (dB) | Frequency Range | Ref. |
---|---|---|---|---|---|---|---|
GNP | 3 wt.% | SiC | 3 | 100 | 43 | Ku | [191] |
GNP | 2 vol.% | B4C | 1.5 | 1850 | 40 | X-band | [193] |
G-like | 7.6 wt.% | SiC | 2.8 | 0.13 | 36.8 | Ku | [200] |
rGO | 0.89 wt.% | mullite | 1.4 | 696 | 32 | K | [196] |
GNP | 2.0 vol.% | Al2O3 | 1.5 | 120 | 23 | X | [192] |
rGO | 2–6 vol.% | SiO2 | 2 | 100–1472 | 29–33 | X-band | [195] |
rGO | 12 wt.% | SiCN | 2 | - | 41.2 | X-band | [198] |
rGO-CNT | 15 wt.% | SiCN | 2 | 5.7 | 67.2 | X-band | [198] |
3D-CNT-GF | n.a. | SiC | 2.5 | 224 | 32.1 | X-band | [206] |
3D-GF | 0.5 wt.% | SiBCN | 1.3 | - | 19 | X-band | [203] |
5.4. Graphene-Based Multi-Component Systems
Filler | Filler Content (wt.%) | Matrix | Thickness (mm) | min RC (dB) | EAB (GHz) | Ref. |
---|---|---|---|---|---|---|
GNP | 2.5 vol.% | MgO | 1.5 | −36.5 | - | [194] |
rGO | 2.5 | SiCN | 2.1 | −62.1 | 3 | [198] |
GNP | 1 | SiCN | 3 | −54 | 1.5 | [197] |
rGO | 10 | SiBCN | 1.8 | −34.6 | 2.5 | [199] |
rGO@SiCnw | 3 | SiOC | 2.35 | −69.3 | 3.9 (400 °C) | [207] |
rGO@SiCnw | 0.5 rGO/2.3 SiCnw | SiBCN | 3.6 | −42 | 4.2 | [199] |
rGO@Fe3O4 | 0.3 | SiBCN | 2.15 | −43.8 (RT) | 3.4 (RT) | [201] |
−66.2 (600 °C) | 3.7 (600 °C) | |||||
3D Gr-like | - | SiBCN | 2.5 | −24.2 | 5.2 | [205] |
graphene | <0.01 | Si3N4 | 3.75 | −26.7 | 4.2 | [211] |
3D SiC/rGO | 0.15 GO: 1.0 SiC | SiC | 3.0 | −47.3 | 4.7 | [213] |
3D CoFe2O4@rGO | n.a. | - | 2.2 | −38 | 5.9 | [208] |
3D CoFe2O4@rGO Fe3O4@rGO | n.a. n.a. | LAS LAS | 2.3 2.1 | −50 −65 | 6.16 4.0 | [209] [210] |
6. Catalytic Applications of Ceramic/Graphene Composites
6.1. Catalysts for Contaminants Removal
6.2. Catalysts for Hydrogen Production
7. Ceramic/Graphene Composites in Biomedicine
7.1. Ceramic/Graphene Structures
7.2. Complex Ceramic/Graphene Composites
8. Thermal Applications of Ceramic/Graphene Composites
8.1. Applications in Thermal Management
8.1.1. Ceramic/Graphene Porous Structures for Heat Sinks and Thermal Energy Storage
8.1.2. Thermal Interface Materials (TIM)
8.2. Applications in Advanced Thermal Insulation
8.3. Electro-Thermal Devices
8.4. Ablative Protection Systems
9. Structural Engineering Applications of Ceramic/Graphene Composites
9.1. Tough Dense Ceramic/Graphene Composites
9.2. Ceramic/Graphene Composites for Tribological Applications
9.3. Ceramic/Graphene Structures with Damping and Superelastic Performances
9.4. Structural Health Monitoring (SHM) Uses
9.5. Cement/Graphene Composites
10. Applications of Additive Manufactured Ceramic/Graphene Composites
10.1. Si3N4, SiC Type Composites
10.2. Alumina, Silica Composites
10.3. Bioceramic Scaffolds
10.4. Clay, Geopolymer Type Composites
10.5. Metal Oxide, Dichalcogenide Type Materials
11. Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Fal’Ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Progr. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Miranzo, P.; Belmonte, M.; Osendi, M.I. From bulk to cellular structures: A review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 2017, 37, 3649–3672. [Google Scholar] [CrossRef] [Green Version]
- Döscher, H.; Schmaltz, T.; Neef, C.; Thielmann, A.; Reiß, T. Graphene Roadmap Briefs (No. 2): Industrialization status and prospects 2020. 2D Mater. 2021, 8, 022005. [Google Scholar] [CrossRef]
- Lin, L.; Peng, H.; Liu, Z. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524. [Google Scholar] [CrossRef]
- Jang, B.Z.; Zhamu, A. Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. J. Mater. Sci. 2008, 43, 5092–5101. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Ma, H.; Xiang, J.; Xia, X. Graphene foam supported LiFePO4 nanosheets composite as advanced cathode for lithium ion batteries. Mater. Res. Bull. 2018, 101, 205–209. [Google Scholar] [CrossRef]
- Oh, J.; Lee, J.; Jeon, Y.; Park, S.; Kim, J.M.; Hwang, T.; Piao, Y. Melamine Foam-Derived N-Doped Carbon Framework and Graphene-Supported LiFePO4 Composite for High Performance Lithium-Ion Battery Cathode Material. ACS Sustain. Chem. Eng. 2019, 7, 306–314. [Google Scholar] [CrossRef]
- Loghavi, M.M.; Eqra, R.; Mohammadi-Manesh, H. Preparation and characteristics of graphene/Y2O3/LiNi0.8Co0.15Al0.05O2 composite for the cathode of lithium-ion battery. J. Electroanal. Chem. 2020, 862, 113971. [Google Scholar] [CrossRef]
- Nakhanivej, P.; Park, S.K.; Shin, K.H.; Yun, S.; Park, H.S. Hierarchically structured vanadium pentoxide/reduced graphene oxide composite microballs for lithium ion battery cathodes. J. Power Sources 2019, 436, 226854. [Google Scholar] [CrossRef]
- Peng, S.; Chen, T.; Lee, C.; Lu, H.; Jessie, S. Optimal cobalt oxide (Co3O4): Graphene (GR) ratio in Co3O4/GR as air cathode catalyst for air-breathing hybrid electrolyte lithium-air battery. J. Power Sources 2020, 471, 228373. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, Y.; Liu, L.; Xia, J.; Nie, S.; Liu, W.; Wang, X.Y. Synthesis and characterization of Na 0.44 MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries. J. Cent. South Univ. 2019, 26, 1510–1520. [Google Scholar]
- Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem 2015, 2, 1645–1651. [Google Scholar] [CrossRef] [Green Version]
- Na, R.; Liu, Y.; Wu, Z.; Cheng, X.; Shan, Z.; Zhong, C.; Tian, J. Nano-Silicon composite materials with N-doped graphene of controllable and optimal pyridinic-to-pyrrolic structural ratios for lithium ion battery. Electrochim. Acta 2019, 321, 134742. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Chen, H.; You, R.; Zheng, G.; Zhang, Q.; Wang, J.; Li, C.; Chen, S.; Yang, Y. Double-shelled microscale porous Si anodes for stable lithium-ion batteries. J. Power Sources 2019, 436, 226794. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Z.; Yang, W.; Li, X.; Li, P.; Guo, X.; Jung, Y.; Dong, X. Nitrification protection of Si monocrystal nanoparticles into the graphene matrix as the high-performance anode material for lithium-ion batteries. Mater. Chem. Phys. 2020, 249, 123156. [Google Scholar] [CrossRef]
- Wang, S.; Hu, X.; Dai, Y. Preparation and electrochemical performance of polymer-derived SiBCN-graphene composite as anode material for lithium ion batteries. Ceram. Int. 2017, 43, 1210–1216. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Kong, J.; Zhuang, Q.; Liu, H.; Shao, Q.; Lu, N.; Feng, Y.; Wujcik, E.K.; Gao, Q.; et al. Polyborosilazane derived ceramics—Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 2019, 296, 925–937. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Hou, Z.; Zhang, L.; Li, C. Uniform SiOx/graphene composite materials for lithium ion battery anodes. J. Alloys Compd. 2019, 809, 151798. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.H.; Wang, J.; Kober, D.; Li, S.; Wang, X.; Shen, X.; Bekheet, M.F.; Gurlo, A. Polymer-Derived SiOC Integrated with a Graphene Aerogel as a Highly Stable Li-Ion Battery Anode. ACS Appl. Mater. Interfaces 2020, 12, 46045–46056. [Google Scholar] [CrossRef]
- Choi, D.S.; Kim, C.; Lim, J.; Cho, S.; Lee, G.Y.; Lee, H.J.; Choi, J.W.; Kim, H.; Kim, I.; Kim, S.O. Ultrastable graphene-encapsulated 3 nm nanoparticles by in situ chemical vapor deposition. Adv. Mater. 2018, 30, 1805023. [Google Scholar] [CrossRef]
- Keshmarzi, M.K.; Daryakenari, A.A.; Omidvar, H.; Javanbakht, M.; Ahmadi, Z.; Delaunay, J.; Badrnezhad, R. Pulsed electrophoretic deposition of nanographitic flake-nanostructured Co3O4 layers for efficient lithium-ion-battery anode. J. Alloys Compd. 2019, 805, 924–933. [Google Scholar] [CrossRef]
- Li, G.; Jing, M.; Chen, Z.; He, B.; Zhou, M.; Hou, Z. Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide with enhanced lithium storage performance. RSC Adv. 2017, 7, 10376–10384. [Google Scholar] [CrossRef] [Green Version]
- Pu, F.; Kong, C.; Lv, J.; Zhang, W.; Zhang, X.; Yang, S.; Jin, H.; Yang, Z. CuO ultrathin nanosheets decorated reduced graphene oxide as a high performance anode for lithium-ion batteries. J. Alloys Compd. 2019, 805, 355–362. [Google Scholar] [CrossRef]
- Fu, Y.X.; Dai, Y.; Pei, X.Y.; Lyu, S.S.; Heng, Y.; Mo, D.C. TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries. Appl. Surf. Sci. 2019, 497, 143553. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Ji, X.; Cheng, S. Facile synthesis of MoO2/Mo-GO with high initial columbic efficiency and enhanced lithiation ability. Mater. Lett. 2019, 254, 332–335. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Z.; Liu, L.; Meng, J.; Cui, F. Zn-Al layered double hydroxide growing on the substrate of graphene and polypyrrole composite as anode material for Zn-Ni secondary battery. Mater. Lett. 2019, 255, 126558. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, Y.; Li, Y.; Niu, M.; Yang, J.; Song, X.; Li, D.; Liu, Y.; Zhang, J. 3D architectures with Co2(OH)2CO3 nanowires wrapped by reduced graphene oxide as superior rate anode materials for Li-ion batteries. Nanoscale 2019, 11, 21180–21187. [Google Scholar] [CrossRef]
- Matios, E.; Wang, H.; Wang, C.; Hu, X.; Lu, X.; Luo, J.; Li, W. Graphene Regulated Ceramic Electrolyte for Solid-State Sodium Metal Battery with Superior Electrochemical Stability. ACS Appl. Mater. Interfaces 2019, 11, 5064–5072. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, C.E.; Jin, M.Y.; Ramirez, C.; Padture, N.P.; Sheldon, B.W. High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide. Matter 2020, 3, 212–229. [Google Scholar] [CrossRef]
- Afif, A.; Rahman, S.M.; Azad, A.T.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Lemine, A.S.; Zagho, M.M.; Altahtamouni, T.M.; Bensalah, N. Graphene a promising electrode material for supercapacitors—A review. Int. J. Energy Res. 2018, 42, 4284–4300. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Tale, B.; Nemade, K.R.; Tekade, P.V. Graphene based nano-composites for efficient energy conversion and storage in Solar cells and Supercapacitors: A Review. Polym. Technol. Mater. 2021, 60, 784–797. [Google Scholar] [CrossRef]
- Yusuf, M.; Kumar, M.; Khan, M.A.; Sillanpääillanpa, M.; Arafat, H. A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites. Adv. Colloid Interface Sci. 2019, 273, 102036. [Google Scholar] [CrossRef]
- Hussain, S.B.Z.; Ihrar, M.; Hussain, S.B.Z.; Oh, W.C.; Ullah, K. A review on graphene based transition metal oxide composites and its application towards supercapacitor electrodes. SN Appl. Sci. 2020, 2, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Devi, A. Recent advancements of metal oxides/Nitrogen-doped graphene nanocomposites for supercapacitor electrode materials. J. Energy Storage 2020, 30, 101486. [Google Scholar] [CrossRef]
- Fulari, A.V.; Reddy, M.V.R.; Jadhav, S.T.; Ghodake, G.S.; Kim, D.Y.; Lohar, G.M. TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: Effect of substrate. J. Mater. Sci. Mater. Electron. 2018, 29, 10814–10824. [Google Scholar] [CrossRef]
- Li, S.S.; Jiang, H.; Yang, K.; Zhang, Z.; Li, S.; Luo, N.; Liu, Q.; Wei, R. Three-dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor. J. Alloys Compd. 2018, 746, 670–676. [Google Scholar] [CrossRef]
- Yue, H.Y.; Guan, E.H.; Gao, X.; Yao, F.; Wang, W.Q.; Zhang, T.; Wang, Z.; Song, S.S.; Zhang, H.J. One-step hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide nanocomposite for supercapacitor. Ionics 2019, 25, 2411–2418. [Google Scholar] [CrossRef]
- Qi, H.; Bo, Z.; Yang, S.; Duan, L.; Yang, H.; Yan, J.; Cen, K.; Ostrikov, K.K. Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater. 2019, 16, 607–618. [Google Scholar] [CrossRef]
- Ding, B.; Wu, X. Transition metal oxides anchored on graphene/carbon nanotubes conductive network as both the negative and positive electrodes for asymmetric supercapacitor. J. Alloys Compd. 2020, 842, 155838. [Google Scholar] [CrossRef]
- Simon, R.; Chakraborty, S.; Darshini, K.S.; Mary, N.L. Electrolyte dependent performance of graphene–mixed metal oxide composites for enhanced supercapacitor applications. SN Appl. Sci. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, W.; Xiang, J.; Huang, Y. Porous NiCo2O4/C nanofibers replicated by cotton template as high-rate electrode materials for supercapacitors. J. Mater. 2016, 2, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Chen, X.; Su, F.; Lyu, X.; Miao, M. Sandwich-Structured Transition Metal Oxide/Graphene/Carbon Nanotube Composite Yarn Electrodes for Flexible Two-Ply Yarn Supercapacitors. Ind. Eng. Chem. Res. 2020, 59, 5752–5759. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, M.; Liu, H.; Wang, Y. Three-dimensional sulfur-doped graphene supported cobalt-molybdenum bimetallic sulfides nanocrystal with highly interfacial storage capability for supercapacitor electrodes. Electrochim. Acta 2019, 322, 134762. [Google Scholar] [CrossRef]
- Zhao, F.; Xie, D.; Huang, W.; Song, X.; Sial, M.A.Z.G.; Wu, H.; Deng, F.; Zhang, Q.; Zou, J.; Zeng, X. Defect-rich honeycomb-like nickel cobalt sulfides on graphene through rapid microwave-induced synthesis for ultrahigh rate supercapacitors. J. Colloid Interface Sci. 2020, 580, 160–170. [Google Scholar] [CrossRef]
- Evariste, U.; Jiang, G.; Yu, B.; Liu, Y.; Ma, P. Electrodeposition of Manganese-Nickel-Cobalt Sulfides on Reduced Graphene Oxide/Nickel Foam for High-Performance Asymmetric Supercapacitors. J. Electron. Mater. 2020, 49, 922–930. [Google Scholar] [CrossRef]
- Kaewpijit, P.; Qin, J.; Pattananuwat, P. Preparation of MXene/N, S doped graphene electrode for supercapacitor application. IOP Conf. Ser. Mater. Sci. Eng. 2019, 600, 012008. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ren, Z.; Singh, G. Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors. Nano-Micro Lett. 2018, 10, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NREL. 2020. Available online: https://www.nrel.gov/pv/cell-efficiency.html,1NREL.pdf (accessed on 2 February 2021).
- Wassei, J.K.; Kaner, R.B. Graphene, a promising transparent conductor. Mater. Today 2010, 13, 52–59. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. Electronic properties of graphene. Phys. Status Solidi Basic Res. 2007, 244, 4106–4111. [Google Scholar] [CrossRef] [Green Version]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.E.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.B. Graphene and its derivatives for solar cells application. Nano Energy 2018, 47, 51–65. [Google Scholar] [CrossRef]
- Liu, R.; Qiu, R.; Zou, T.; Liu, C.; Chen, J.; Dai, Q.; Zhang, S.; Zhou, H. SnO2-rGO nanocomposite as an efficient electron transport layer for stable perovskite solar cells on AZO substrate. Nanotechnology 2019, 30, 75202. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Balu, M.; Ramakrishnan, S.; Ramamurthy, P.C.; Batabyal, S.K.; Kumaresan, D.; Kothurkar, N.K. Molybdenum disulfide/reduced graphene oxide hybrids with enhanced electrocatalytic activity: An efficient counter electrode for dye-sensitized solar cells. J. Electroanal. Chem. 2019, 847, 113236. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Li, S.; Cui, X.; Liu, Y.; Huang, W.; Mao, L.; Wei, X.; Zhang, X. One-step fabrication of TiO2/graphene hybrid mesoporous film with enhanced photocatalytic activity and photovoltaic performance. Chin. J. Catal. 2020, 41, 1208–1216. [Google Scholar] [CrossRef]
- Kumar, K.A.; Subalakshmi, K.; Senthilselvan, J. Effect of co-sensitization in solar exfoliated TiO2 functionalized rGO photoanode for dye-sensitized solar cell applications. Mater. Sci. Semicond. Process. 2019, 96, 104–115. [Google Scholar] [CrossRef]
- Basu, K.; Selopal, G.S.; Mohammadnezad, M.; Akilimali, R.; Wang, Z.M.; Zhao, H.; Vetrone, F.; Rosei, F. Hybrid graphene/metal oxide anodes for efficient and stable dye sensitized solar cell. Electrochim. Acta 2020, 349, 136409. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Ghanem, M.A.; Reda, S.M.; Khairy, M.; Naguib, E.M.; Alotaibi, N.H. Photovoltaic and capacitance performance of low-resistance ZnO nanorods incorporated into carbon nanotube-graphene oxide nanocomposites. Electrochim. Acta 2019, 307, 430–441. [Google Scholar] [CrossRef]
- Khan, M.W.; Yao, J.; Zhang, K.; Zuo, X.; Yang, Q.; Tang, H.; Rehman, K.M.U.; Zhang, H.; Li, G.; Jin, S.; et al. Engineering N-reduced graphene oxide wrapped Co3O4@f-MWCNT hybrid for enhance performance dye-sensitized solar cells. J. Electroanal. Chem. 2019, 844, 142–154. [Google Scholar] [CrossRef]
- Ko, Y.; Choi, W.; Kim, Y.; Lee, C.; Jun, Y.; Kim, J. Synthesis of cose2/rgo composites and its application as a counter electrode for dye-sensitized solar cells. J. Electrochem. Sci. Technol. 2019, 10, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Singh, E.; Kim, K.S.; Yeom, G.Y.; Nalwa, H.S. Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Adv. 2017, 7, 28234–28290. [Google Scholar] [CrossRef] [Green Version]
- Agresti, A.; Pescetelli, S.; Taheri, B.; del Rio Castillo, A.E.; Cina, L.; Bonaccorso, F.; di Carlo, A. Graphene–Perovskite Solar Cells Exceed 18% Efficiency: A Stability Study. ChemSusChem 2016, 9, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Han, J.; Yin, X.; Zhou, Y.; Yao, Z.; Li, X.; Lin, H. Reduced Graphene Oxide/CZTSx Se 1-x Composites as a Novel Hole-Transport Functional Layer in Perovskite Solar Cells. ChemElectroChem 2019, 6, 1500–1507. [Google Scholar] [CrossRef]
- Lim, E.L.; Yap, C.C.; Jumali, M.H.H.; Teridi, M.A.M.; Teh, C.H. A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications? Nano-Micro Lett. 2018, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.B. Stability Enhancement in Perovskite Solar Cells with Perovskite/Silver-Graphene Composites in the Active Layer. ACS Energy Lett. 2019, 4, 235–241. [Google Scholar] [CrossRef]
- Gao, F.; Liu, K.; Cheng, R.; Zhang, Y. Efficiency enhancement of perovskite solar cells based on graphene-CuInS2 quantum dots composite: The roles for fast electron injection and light harvests. Appl. Surf. Sci. 2020, 528, 146560. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Jang, M.H.; Lee, M.L.; Kang, M.G.; Im, S.H. Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A 2017, 5, 21146–21152. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Dubey, A.; Qiao, Q. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol. Energy 2020, 197, 78–83. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 2020, 1–26. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, Z.S.; Ali, A.; Iqbal, N. Studies on solution processed Graphene-Nb2O5nanocomposite based photoanode for dye-sensitized solar cells. J. Alloys Compd. 2017, 694, 401–407. [Google Scholar] [CrossRef]
- Ge, Z.; Zhu, Y.; Wang, C.; Xia, L.; Guo, L.; Wu, Y.; Liu, J. Investigation of the photoanode based on graphene/zinc aluminum mixed metal oxide for dye-sensitized solar cell. J. Sol. Gel Sci. Technol. 2020, 95, 432–438. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Ge, Z.; Shi, R.; Chen, T.; Chen, Z.; Liu, J. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell. Colloids Interface Sci. Commun. 2020, 39, 100313. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, J.; Jiao, Q.; Li, Y.; Liu, X.; Shi, D.; Wu, Q.; Zhao, Y.; Li, H. Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon N. Y. 2017, 119, 225–234. [Google Scholar] [CrossRef]
- Yue, Z.; Wu, G.; Chen, X.; Han, Y.; Liu, L.; Zhou, Q. Facile, room-temperature synthesis of NiSe2 nanoparticles and its improved performance with graphene in dye-sensitized solar cells. Mater. Lett. 2017, 192, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Krishnapriya, R.; Praneetha, S.; Rabel, A.M.; Murugan, A.V. Energy efficient, one-step microwave-solvothermal synthesis of a highly electro-catalytic thiospinel NiCo2S4/graphene nanohybrid as a novel sustainable counter electrode material for Pt-free dye-sensitized solar cells. J. Mater. Chem. C 2017, 5, 3146–3155. [Google Scholar] [CrossRef]
- Zhang, M.; Zai, J.; Liu, J.; Chen, M.; Wang, Z.; Li, G.; Qian, X.; Qian, L.; Yu, X. A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Dalt. Trans. 2017, 46, 9511–9516. [Google Scholar] [CrossRef]
- Javed, H.M.A.; Qureshi, A.A.; Mustafa, M.S.; Que, W.; Mahr, M.S.; Shaheen, A.; Iqbal, J.; Saleem, S.; Jamshaid, M.; Mahmood, A. Advanced Ag/rGO/TiO2 ternary nanocomposite based photoanode approaches to highly-efficient plasmonic dye-sensitized solar cells. Opt. Commun. 2019, 453, 124408. [Google Scholar] [CrossRef]
- Majumder, T.; Mondal, S.P. Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications. Bull. Mater. Sci. 2019, 42, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Peng, T.; Kou, Z.; Cheng, K.; Zhang, J.; Zhang, J.; Meng, T.; Mu, S. In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction. J. Energy Chem. 2017, 26, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Simari, C.; Lufrano, E.; Godbert, N.; Gournis, D.; Coppola, L.; Nicotera, I. Titanium dioxide grafted on graphene oxide: Hybrid nanofiller for effective and low-cost proton exchange membranes. Nanomaterials 2020, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, K.; Habibi, B. NiCo alloy nanoparticles electrodeposited on an electrochemically reduced nitrogen-doped graphene oxide/carbon-ceramic electrode: A low cost electrocatalyst towards methanol and ethanol oxidation. RSC Adv. 2019, 9, 34050–34064. [Google Scholar] [CrossRef] [Green Version]
- Habibi, B.; Ghaderi, S. Electrosynthesized Ni-Al layered double hydroxide-Pt nanoparticles as an inorganic nanocomposite and potentate anodic material for methanol electrooxidation in alkaline media. Bull. Chem. React. Eng. Catal. 2017, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Wang, H.; Huang, K.; Liu, W.; Bi, K.; Lei, M. Graphite carbon enclosed AlN nanoparticles with enhanced methanol-tolerant electrocatalytic properties for oxygen reduction. J. Ceram. Sci. Technol. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Ranjani, M.; Pannipara, M.; Al-Sehemi, A.G.; Vignesh, A.; Kumar, G.G. Chitosan/sulfonated graphene oxide/silica nanocomposite membranes for direct methanol fuel cells. Solid State Ionics 2019, 338, 153–160. [Google Scholar] [CrossRef]
- Frattini, D.; Accardo, G.; Ferone, C.; Cioffi, R. Fabrication and characterization of graphite-cement composites for microbial fuel cells applications. Mater. Res. Bull. 2017, 88, 188–199. [Google Scholar] [CrossRef]
- Li, Z.L.; Yang, S.; Xu, H.; Wang, Z.; Wang, W.; Dang, Z.; Zhao, Y. In-situ modified titanium suboxides with polyaniline/graphene as anode to enhance biovoltage production of microbial fuel cell. Int. J. Hydrog. Energy 2019, 44, 6862–6870. [Google Scholar] [CrossRef]
- Ahilan, V.; de Barros, C.C.; Bhowmick, G.D.; Ghangrekar, M.M.; Murshed, M.M.; Wilhelm, M.; Rezwan, K. Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes. Bioelectrochemistry 2019, 129, 259–269. [Google Scholar] [CrossRef]
- Zhu, W.Z.; Deevi, S.C. Development of interconnect materials for solid oxide fuel cells. Mater. Sci. Eng. A 2003, 348, 227–243. [Google Scholar] [CrossRef]
- Marinha, D.; Belmonte, M. Mixed-ionic and electronic conduction and stability of YSZ-graphene composites. J. Eur. Ceram. Soc. 2019, 39, 389–395. [Google Scholar] [CrossRef]
- Kurapova, O.Y.; Glukharev, A.G.; Glumov, O.V.; Kurapov, M.Y.; Boltynjuk, E.V.; Konakov, V.G. Structure and electrical properties of YSZ-rGO composites and YSZ ceramics, obtained from composite powder. Electrochim. Acta 2019, 320, 134573. [Google Scholar] [CrossRef]
- Gómez-Gómez, A.; Ramirez, C.; Llorente, J.; Garcia, A.; Moreno, P.; Reveron, H.; Chevalier, J.; Osendi, M.I.; Belmonte, M.; Miranzo, P. Improved crack resistance and thermal conductivity of cubic zirconia containing graphene nanoplatelets. J. Eur. Ceram. Soc. 2020, 40, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.; Ahmad, M.A.; Raza, R.; Khan, M.A.; Rehman, Z.U.; Abbas, G. Graphene Incorporated Nanocomposite Anode for Low Temperature SOFCs. J. Electron. Mater. 2019, 48, 7507–7514. [Google Scholar] [CrossRef]
- Bowen, C.R.; Kim, H.A.; Weaver, P.M.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Selvan, K.V.; Ali, M.S.M. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 2016, 54, 1035–1047. [Google Scholar] [CrossRef]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2019, 304, 1800463. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.; Sharma, B.K.; Ahn, J.H. Graphene based nanogenerator for energy harvesting. Jpn. J. Appl. Phys. 2013, 52, 06GA02. [Google Scholar] [CrossRef]
- Alam, I.; Sa, K.; Das, S.; Subramanyam, B.V.R.S.; Raiguru, J.; Samanta, B.; Kumar, P.; Mahanandia, P. Dielectric Behavior of PZT/Graphene Oxide Composites. Phys. Status Solidi Appl. Mater. Sci. 2019, 216, 1900108. [Google Scholar] [CrossRef]
- Jaitanong, N.; Narksitipan, S.; Chaipanich, A. Fabrication and electrical properties of PC-PNZT-PVDF-GO composites. Integr. Ferroelectr. 2017, 183, 176–181. [Google Scholar] [CrossRef]
- Chamankar, N.; Khajavi, R.; Yousefi, A.A.; Rashidi, A.; Golestanifard, F. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 2020, 46, 19669–19681. [Google Scholar] [CrossRef]
- Yan, J.; Liu, M.; Jeong, Y.G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 2019, 56, 662–692. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Huang, H. Dielectric, Piezoelectric and Ferroelectric Properties of Flexible 0–3 Type PZT/PVDF Composites Doped with Graphene. J. Electron. Mater. 2019, 48, 4033–4039. [Google Scholar] [CrossRef]
- Karumuthil, S.C.; Rajeev, S.P.; Varghese, S. Poly(vinylidene fluoride-trifluoroethylene)-ZnO Nanoparticle Composites on a Flexible Poly(dimethylsiloxane) Substrate for Energy Harvesting. ACS Appl. Nano Mater. 2019, 2, 4350–4357. [Google Scholar] [CrossRef]
- Kim, J.; Ji, J.; Shin, D.; Yoon, S.; Ko, Y.; Cho, K.; Koh, J. 2-Dimensional rGO introduced PMN-PT and P(VDF-TrFE) flexible films for enhanced piezoelectric energy harvester. Appl. Surf. Sci. 2019, 494, 1000–1006. [Google Scholar] [CrossRef]
- Anand, A.; Meena, D.; Bhatnagar, M.C. Synthesis and characterization of flexible PVDF/Bi2Al4O9/RGO based piezoelectric materials for nanogenerator application. J. Alloys Compd. 2020, 843, 156019. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, J.-H. Graphene for flexible and wearable device applications. Carbon N. Y. 2017, 120, 244–257. [Google Scholar] [CrossRef]
- Choudhry, I.; Khalid, H.R.; Lee, H.-K. Flexible Piezoelectric Transducers for Energy Harvesting and Sensing from Human Kinematics. ACS Appl. Electron. Mater. 2020, 2, 3346–3357. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, F.; Qu, J.; Qi, T. Enhanced mechanical and piezoelectric properties of BCZT-CuY/rGO-based nanogenerator for tiny energy harvesting. Mater. Lett. 2018, 231, 20–23. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, S.; Qi, F.; Zan, J.; Liu, G.; Zhao, Z.; Shuai, C. Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold. Mater. Sci. Eng. C 2020, 116, 111195. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, L.; Alhwarai, M.; Samad, Y.A.; Mohammad, B.; Laio, K.; Elnaggar, I. Characterization of a Graphene-Based Thermoelectric Generator Using a Cost-Effective Fabrication Process. Energy Procedia 2015, 75, 615–620. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, D.; Norman, C.; Azough, F.; Ekren, D.; Chen, K.; Reece, M.J.; Kinloch, I.A.; Freer, R. Anisotropy and enhancement of thermoelectric performance of Sr0.8La0.067Ti0.8Nb0.2O3-: δ ceramics by graphene additions. J. Mater. Chem. A 2019, 7, 24602–24613. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Li, J.; Fan, Y.; Xing, J.; Gu, H.; Zhou, Z.; Lu, X.; Zhang, Q.; Wang, L.; Jiang, W. The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics. J. Alloys Compd. 2019, 786, 884–893. [Google Scholar] [CrossRef]
- Okhay, O.; Zlotnik, S.; Xie, W.; Orlinski, K.; Gallo, M.J.H.; Otero-Irurueta, G.; Fernandes, A.J.S.; Pawlak, D.A.; Weidenkaff, A.; Tkach, A. Thermoelectric performance of Nb-doped SrTiO3 enhanced by reduced graphene oxide and Sr deficiency cooperation. Carbon N. Y. 2019, 143, 215–222. [Google Scholar] [CrossRef]
- Rahman, J.U.; Van Du, N.; Nam, W.H.; Shin, W.H.; Lee, K.H.; Seo, W.; Kim, M.H.; Lee, S. Grain Boundary Interfaces Controlled by Reduced Graphene Oxide in Nonstoichiometric SrTiO3-δ Thermoelectrics. Sci. Rep. 2019, 9, 8624. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fan, Y.; Nomura, N.; Kikuchi, K.; Wang, L.; Jiang, W.; Kawasaki, A. Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties. Carbon N. Y. 2017, 112, 169–176. [Google Scholar] [CrossRef]
- Mallada, C.; Menéndez, J.L.; Dura, O.J.; de la Torre, M.A.L.; Menéndez, R.; Santamaría, R. Spark plasma sintered BaTiO3/graphene composites for thermoelectric applications. J. Eur. Ceram. Soc. 2017, 37, 3741–3746. [Google Scholar] [CrossRef]
- Zhang, S.; Li, A.; Sun, K. Thermoelectric properties of Graphene/Mn0.7Zn0.3Fe2O4 composites. Ceram. Int. 2017, 43, 8643–8647. [Google Scholar] [CrossRef]
- Ramirez, C.; Leborán, V.; Rivadulla, F.; Miranzo, P.; Osendi, M.I. Thermopower and hall effect in silicon nitride composites containing thermally reduced graphene and pure graphene nanosheets. Ceram. Int. 2016, 42, 11341–11347. [Google Scholar] [CrossRef]
- Ghosh, S.; Harish, S.; Rocky, K.A.; Ohtaki, M.; Saha, B.B. Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting. Energy Build. 2019, 202, 109419. [Google Scholar] [CrossRef]
- Ghosh, S.; Harish, S.; Ohtaki, M.; Saha, B.B. Enhanced figure of merit of cement composites with graphene and ZnO nanoinclusions for efficient energy harvesting in buildings. Energy 2020, 198, 117396. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy. Small 2019, 17, 1903469. [Google Scholar] [CrossRef]
- Azad, P.; Sharma, M.; Vaish, R. Diesel Exhaust Emission Soot Coated Pyroelectric Materials for Improved Thermal Energy Harvesting. Glob. Chall. 2019, 3, 1800089. [Google Scholar] [CrossRef]
- Azad, P.K.; Vaish, R. Solar Energy Harvesting Using Pyroelectric Effect Associated with Piezoelectric Buzzer. Phys. Status Solidi 2019, 216, 1900440. [Google Scholar] [CrossRef]
- Han, Z.; Ullah, S.; Zheng, G.; Yin, H.; Zhao, J.; Cheng, S.; Wang, X.; Yang, J. The thermal-to-electrical energy conversion in (Bi0.5Na0.5)0.94Ba0.06TiO03/graphene oxide heterogeneous structures. Ceram. Int. 2019, 45, 24493–24499. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Wang, L.; Zheng, H.; Li, D.; Avila, R.; Lai, K.W.C.; Wang, Z.; Xie, Z.; Zi, Y.; et al. Skin-Integrated Graphene-Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. Adv. Mater. Technol. 2019, 4, 1900744. [Google Scholar] [CrossRef]
- Sebald, G.; Guyomar, D.; Agbossou, A. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 2009, 18, 125006. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Pumera, M.; Ambrosi, A.; Bonanni, A.; Chng, E.L.K.; Poh, H.L. Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 2010, 29, 954–965. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.T.; Nined, J.; Krebsz, M.; Pasinszki, T.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Adv. Funct. Mater. 2017, 27, 1702891. [Google Scholar] [CrossRef]
- Xiang, L.; Zeng, X.; Xia, F.; Jin, W.; Liu, Y.; Hu, Y. Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano 2020, 14, 6449–6469. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Kim, S.; Min, D.-H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 2016, 105, 275–287. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078–10091. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Niu, Q.; Gu, X.; Yang, N.; Zhao, G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 2019, 11, 11992–12014. [Google Scholar] [CrossRef]
- Zheng, Q.; Lee, J.H.; Shen, X.; Chen, X.; Kim, J.K. Graphene-based wearable piezoresistive physical sensors. Mater. Today 2020, 36, 158–179. [Google Scholar] [CrossRef]
- Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett. 2016, 8, 95–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.E.; Ghatkesar, M.K.; Zhang, C.; Janssen, G.C.A.M. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 2013, 102, 161904. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.H.; Lee, Y.; Sharma, B.K.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Graphene-based transparent strain sensor. Carbon N. Y. 2013, 51, 236–242. [Google Scholar] [CrossRef]
- Juang, R.S.; Cheng, Y.; Chen, W.; Wang, K.; Fu, C.; Liu, S.; Jeng, R.; Chen, C.; Yang, M.; Liu, T. Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone. Appl. Surf. Sci. 2020, 521, 146372. [Google Scholar] [CrossRef]
- Sharp, N.; Kuntz, A.; Brubaker, C.; Amos, S.; Gao, W.; Gupta, G.; Mohite, A.; Farrar, C.; Mascarenas, D. Crack detection sensor layout and bus configuration analysis. Smart Mater. Struct. 2014, 23, 055021. [Google Scholar] [CrossRef]
- Manikandan, V.S.; Adhikari, B.R.; Chen, A. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst 2018, 143, 4537–4554. [Google Scholar] [CrossRef]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio)sensors for smart agriculture. TrAC Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Jang, H.; Park, Y.J.; Chen, X.; Das, T.; Kim, M.S.; Ahn, J.H. Graphene-Based Flexible and Stretchable Electronics. Adv. Mater. 2016, 28, 4184–4202. [Google Scholar] [CrossRef]
- Yao, S.; Swetha, P.; Zhu, Y. Nanomaterial-Enabled Wearable Sensors for Healthcare. Adv. Healthc. Mater. 2018, 7, 1700889. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Chatterjee, S.G.; Chatterjee, S.; Ray, A.K.; Chakraborty, A.K. Graphene-metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B Chem. 2015, 221, 1170–1181. [Google Scholar] [CrossRef]
- Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for vocs gas sensing. Nanomaterials 2020, 10, 1485. [Google Scholar] [CrossRef]
- Song, Z.; Wei, Z.; Wang, B.; Luo, Z.; Xu, S.; Zhang, W.; Yu, H.; Li, M.; Huang, Z.; Zang, J.; et al. Sensitive Room-Temperature H2S Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites. Chem. Mater. 2016, 28, 1205–1212. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors. Sens. Actuators B Chem. 2017, 248, 980–986. [Google Scholar] [CrossRef]
- Kim, H.W.; Na, H.G.; Kwon, Y.J.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Wu, P.; Kim, S.S. Microwave-Assisted Synthesis of Graphene-SnO2 Nanocomposites and Their Applications in Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 31667–31682. [Google Scholar] [CrossRef]
- Zhang, D.; Chang, H.; Li, P.; Liu, R.; Xue, Q. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators B Chem. 2016, 225, 233–240. [Google Scholar] [CrossRef]
- Rong, X.; Chen, D.; Qu, G.; Li, T.; Zhang, R.; Sun, J. Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance. Sens. Actuators B Chem. 2018, 269, 223–237. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 2017, 244, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Cheng, Z.; Gao, L.; Zhang, Y.; Xu, J.; Zhao, H. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 2016, 230, 736–745. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Yan, C.; Yang, Z.; Zhu, G.; Gao, J.; Yin, F.; Wang, C. Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties. Sens. Actuators B Chem. 2018, 264, 128–138. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, T.; Liu, J.; Liu, Q.; Jing, X.; Zhang, H.; Huang, G.; Wang, J. Controllable synthesis and enhanced gas sensing properties of a single-crystalline WO3-rGO porous nanocomposite. RSC Adv. 2017, 7, 14192–14199. [Google Scholar] [CrossRef] [Green Version]
- Jeevitha, G.; Abhinayaa, R.; Mangalaraj, D.; Ponpandian, N.; Meena, P.; Mounasamy, V.; Madanagurusamy, S. Porous reduced graphene oxide (rGO)/WO3 nanocomposites for the enhanced detection of NH3 at room temperature. Nanoscale Adv. 2019, 1, 1799–1811. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Chen, W.; Jin, L.; Cui, F.; Song, Z.; Zhu, C. High performance acetylene sensor with heterostructure based on WO3 nanolamellae/reduced graphene oxide (rGO) nanosheets operating at low temperature. Nanomaterials 2018, 8, 909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Huang, J.; Gong, Y.; Xu, X.; Li, H. Liquid flame spray fabrication of WO3-reduced graphene oxide nanocomposites for enhanced O3-sensing performances. Ceram. Int. 2017, 43, 13185–13192. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, B.; Wang, Y.; Gao, Y.; Liang, X.; Wang, Y.; Lu, G. Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection. J. Colloid Interface Sci. 2017, 504, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Andre, R.S.; Mercante, L.A.; Facure, M.H.M.; Mattoso, L.H.C.; Correa, D.S. Enhanced and selective ammonia detection using In2O3 /reduced graphene oxide hybrid nanofibers. Appl. Surf. Sci. 2019, 473, 133–140. [Google Scholar] [CrossRef]
- Li, B.; Tian, Q.; Su, H.; Wang, X.; Wang, T.; Zhang, D. High sensitivity protable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens. Actuators B Chem. 2019, 299, 126973. [Google Scholar] [CrossRef]
- Ma, Z.; Song, P.; Yang, Z.; Wang, Q. Trimethylamine detection of 3D rGO/mesoporous in In2O3 nanocomposites at room temperature. Appl. Surf. Sci. 2019, 465, 625–634. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q.; Wang, Y.; Lu, G. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuators B Chem. 2017, 249, 715–724. [Google Scholar] [CrossRef]
- Yun, J.; Lim, Y.; Lee, H.; Lee, G.; Park, H.; Hong, S.Y.; Jin, S.W.; Lee, Y.H.; Lee, S.; Ha, J.S. A Patterned Graphene/ZnO UV Sensor Driven by Integrated Asymmetric Micro-Supercapacitors on a Liquid Metal Patterned Foldable Paper. Adv. Funct. Mater. 2017, 27, 1700135. [Google Scholar] [CrossRef]
- Fu, H.; Jiang, Y.; Ding, J.; Zhang, J.; Zhang, M.; Zhu, Y.; Li, H. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sens. Actuators B Chem. 2018, 254, 239–247. [Google Scholar] [CrossRef]
- Kathiravan, D.; Huang, B.R.; Saravanan, A. Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors. ACS Appl. Mater. Interfaces 2017, 9, 12064–12072. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Kashanian, S.; Moradipour, P.; Maleki, N. A novel fabrication of sensor using ZnO-Al2O3 ceramic nanofibers to simultaneously detect catechol and hydroquinone. J. Electroanal. Chem. 2018, 812, 122–131. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, C.; Liu, J.; Cao, Y. Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators B Chem. 2017, 247, 875–882. [Google Scholar] [CrossRef]
- Yang, J.; Tan, W.; Chen, C.; Tao, Y.; Qin, Y.; Kong, Y. Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mater. Sci. Eng. C 2017, 78, 210–217. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 2020, 560, 208–212. [Google Scholar] [CrossRef]
- Jia, X.; Lian, D.; Shi, B.; Dai, R.; Li, C.; Wu, X. Facile synthesis of α-Fe2O3@graphene oxide nanocomposites for enhanced gas-sensing performance to ethanol. J. Mater. Sci. Mater. Electron. 2017, 28, 12070–12079. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Cui, X.; Wang, Y.; Gao, Y.; Sun, P.; Liu, F.; Shimanoe, K.; Yamazoe, N.; Lu, G. Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B Chem. 2017, 241, 904–914. [Google Scholar] [CrossRef]
- Hao, C.; Shen, Y.; Wang, Z.; Wang, X.; Feng, F.; Ge, C.; Zhao, Y.; Wang, K. Preparation and Characterization of Fe2O3 Nanoparticles by Solid-Phase Method and Its Hydrogen Persoxide Sensing Properties. ACS Sustain. Chem. Eng. 2016, 4, 1069–1077. [Google Scholar] [CrossRef]
- Taleb, M.; Ivanov, R.; Bereznev, S.; Kazemi, S.H.; Hussainova, I. Graphene-ceramic hybrid nanofibers for ultrasensitive electrochemical determination of ascorbic acid. Microchim. Acta 2017, 184, 897–905. [Google Scholar] [CrossRef]
- Muthumariyappan, A.; Rajaji, U.; Chen, S.M.; Baskaran, N.; Chen, T.W.; Ramalingam, R.J. Sonochemical synthesis of perovskite-type barium titanate nanoparticles decorated on reduced graphene oxide nanosheets as an effective electrode material for the rapid determination of ractopamine in meat samples. Ultrason. Sonochem. 2019, 56, 318–326. [Google Scholar] [CrossRef]
- Xiong, C.; Li, M.; Zhao, W.; Duan, C.; Ni, Y. Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. J. Mater. 2020, 6, 523–531. [Google Scholar] [CrossRef]
- Mauriz, E. Recent progress in plasmonic biosensing schemes for virus detection. Sensors 2020, 20, 4745. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Zaid, M.H.M.; Daniyal, W.M.E.M.M.; Mahdi, M.A. Sensitive surface plasmon resonance performance of cadmium sulfide quantum dots-amine functionalized graphene oxide based thin film towards dengue virus E-protein. Opt. Laser Technol. 2019, 114, 204–208. [Google Scholar] [CrossRef]
- Lerner, M.B.; Pan, D.; Gao, Y.; Locascio, L.E.; Lee, K.; Nokes, J.; Afsahi, S.; Lerner, J.D.; Walker, A.; Collins, P.G.; et al. Large scale commercial fabrication of high quality graphene-based assays for biomolecule detection. Sens. Actuators B Chem. 2017, 239, 1261–1267. [Google Scholar] [CrossRef]
- Yang, L.; Yin, L.; Hong, C.; Dong, S.; Liu, C.; Zhang, X. Strong and thermostable hydrothermal carbon coated 3D needled carbon fiber reinforced silicon-boron carbonitride composites with broadband and tunable high-performance microwave absorption. J. Colloid Interface Sci. 2021, 582, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wan, C. Controllable fabrication and multifunctional applications of graphene/ceramic composites. J. Adv. Ceram. 2020, 9, 271–291. [Google Scholar] [CrossRef]
- Meng, F.; Wang, H.; Huang, F.; Guo, Y.; Wang, Z.; Hui, D.; Zhou, Z. Graphene-based microwave absorbing composites: A review and prospective. Compos. Part B Eng. 2018, 137, 260–277. [Google Scholar] [CrossRef]
- Chen, C.; Tan, Y.; Han, X.; Luo, H.; Zeng, S.; Peng, S.; Zhang, H. Enhanced electromagnetic interference shielding properties of silicon carbide composites with aligned graphene nanoplatelets. J. Eur. Ceram. Soc. 2018, 38, 5615–5619. [Google Scholar] [CrossRef]
- Qing, Y.; Wen, Q.; Luo, F.; Zhou, W. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 2016, 4, 4853–4862. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Luo, H.; Zhou, X.S.; Peng, S.M.; Zhang, H.B. Boron carbide composites with highly aligned graphene nanoplatelets: Light-weight and efficient electromagnetic interference shielding materials at high temperatures. RSC Adv. 2018, 8, 39314–39320. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Pan, L.; Jiang, S.; Yin, S.; Li, X.; Zhang, J.; Feng, Y.; Yang, J. Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites. J. Eur. Ceram. Soc. 2018, 38, 1639–1646. [Google Scholar] [CrossRef]
- Huang, Y.; Yasuda, K.; Wan, C. Intercalation: Constructing Nanolaminated Reduced Graphene Oxide/Silica Ceramics for Lightweight and Mechanically Reliable Electromagnetic Interference Shielding Applications. ACS Appl. Mater. Interfaces 2020, 12, 55148–55156. [Google Scholar] [CrossRef]
- Ru, J.; Fan, Y.; Zhou, W.; Zhou, Z.; Wang, T.; Liu, R.; Yang, J.; Lu, X.; Wang, J.; Ji, C.; et al. Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 39245–39256. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Guo, X.; Gong, H.; Zhang, Y.; Liu, Y.; Lin, X.; Mao, J. The influence of carbon materials on the absorption performance of polymer-derived SiCN ceramics in X-band. Ceram. Int. 2018, 44, 15686–15689. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Z.; Ishikawa, R.; Chen, L.; Yin, X.; Ikuhara, Y.; Riedel, R. Single-source-precursor synthesis and electromagnetic properties of novel RGO–SiCN ceramic nanocomposites. J. Mater. Chem. C 2017, 5, 7950–7960. [Google Scholar] [CrossRef]
- Song, C.; Cheng, L.; Liu, Y.; Zhao, M.; Ye, F. Microstructure and electromagnetic wave absorption properties of RGO-SiBCN composites via PDC technology. Ceram. Int. 2018, 44, 18759–18769. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y. Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications. J. Alloys Compd. 2017, 709, 313–321. [Google Scholar] [CrossRef]
- Luo, C.; Jiao, T.; Gu, J.; Tang, Y.; Kong, J. Graphene Shield by SiBCN Ceramic: A Promising High-Temperature Electromagnetic Wave-Absorbing Material with Oxidation Resistance. ACS Appl. Mater. Interfaces 2018, 10, 39307–39318. [Google Scholar] [CrossRef]
- Sultanov, F.; Daulbayev, C.; Bakbolat, B.; Daulbayev, O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv. Colloid Interface Sci. 2020, 285, 102281. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zhao, M.; Ye, F.; Cheng, L. Three-dimensional graphene/SiBCN composites for high-performance electromagnetic interference shielding. Ceram. Int. 2018, 44, 22830–22839. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zhao, M.; Ye, F.; Cheng, L. Effects of upgrading temperature on electromagnetic shielding properties of three-dimensional graphene/SiBCN/SiC ceramic composites. Ceram. Int. 2019, 45, 21278–21285. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Du, Y. EMW absorption properties of in-situ growth seamless SiBCN-graphene hybrid material. Ceram. Int. 2019, 45, 659–664. [Google Scholar] [CrossRef]
- Yang, Y.; Zuo, Y.; Feng, L.; Hou, X.; Suo, G.; Ye, X.; Zhang, L. Powerful and lightweight electromagnetic-shielding carbon nanotube/graphene foam/silicon carbide composites. Mater. Lett. 2019, 256, 126634. [Google Scholar] [CrossRef]
- Han, M.; Yin, X.; Duan, W.; Ren, S.; Zhang, L.; Cheng, L. Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 2016, 36, 2695–2703. [Google Scholar] [CrossRef]
- Liang, X.; Quan, B.; Sun, B.; Man, Z.; Xu, X.; Ji, G. Extended Effective Frequency of Three-Dimensional Graphene with Sustainable Energy Attenuation. ACS Sustain. Chem. Eng. 2019, 7, 10477–10483. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, L.; Zhong, B.; Yang, H.; Shi, B.; Huang, L.; Yang, Y.; Huang, X. Three-dimensional reduced graphene oxide/CoFe2O4 composites loaded with LAS particles for lightweight and enhanced microwave absorption properties. J. Alloys Compd. 2019, 799, 368–376. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, L.; Zhang, T.; Shi, B.; Huang, L.; Zhong, B.; Zhang, X.; Wang, H.; Zhang, J.; Wen, G. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J. 2018, 352, 510–518. [Google Scholar] [CrossRef]
- Ye, F.; Song, Q.; Zhang, Z.; Li, W.; Zhang, S.; Yin, X.; Zhou, Y.; Tao, H.; Liu, Y.; Cheng, L.; et al. Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si 3 N 4 Ceramic for Broadband High-Performance Microwave Absorption. Adv. Funct. Mater. 2018, 28, 1707205. [Google Scholar] [CrossRef]
- Hou, Z.; Yin, X.; Xu, H.; Wei, H.; Li, M.; Cheng, L.; Zhang, L. Reduced Graphene Oxide/Silicon Nitride Composite for Cooperative Electromagnetic Absorption in Wide Temperature Spectrum with Excellent Thermal Stability. ACS Appl. Mater. Interfaces 2019, 11, 5364–5372. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Liu, Y.-J.; Sui, G.-X. Lightweight spongy bone-like graphene@SiC aerogel composites for high-performance microwave absorption. Chem. Eng. J. 2018, 337, 522–531. [Google Scholar] [CrossRef]
- Singh, S.B.; Hussain, C.M. Nano-Graphene as Groundbreaking Miracle Material: Catalytic and Commercial Perspectives. ChemistrySelect 2018, 3, 9533–9544. [Google Scholar] [CrossRef]
- Vinothkannan, M.; Karthikeyan, C.; Kumar, G.G.; Kim, A.R.; Yoo, D.J. One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 nanocomposites and its catalytic activity toward methylene blue dye degradation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Mo, Z.; Zhang, P.; Wang, B.; Zhu, X.; Guo, R. Synthesis of graphene/Fe3O4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater. J. Porous Mater. 2015, 22, 1245–1253. [Google Scholar] [CrossRef]
- Liu, P.; Sun, H.; Liu, X.; Sui, H.; Zhang, Y.; Zhou, D.; Guo, Q.; Ruan, Y. Enhanced photocatalytic performance of Bi2Fe4O9/graphene via modifying graphene composite. J. Am. Ceram. Soc. 2017, 100, 3540–3549. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, X.; Dong, X.; Huang, Y.; Guo, D. Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system. Environ. Sci. Pollut. Res. 2020, 27, 29599–29611. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.; Kazemi, P. Decoration of anatase-graphene nanocomposites on extruded nano-porous mullite based support for dye degradation under solar irradiation in a dynamic system: Photocatalytic activity and mechanical characterization. Microporous Mesoporous Mater. 2020, 305, 110372. [Google Scholar] [CrossRef]
- Trinh, D.T.T.; Channei, D.; Chansaenpak, K.; Khanitchaidecha, W.; Nakaruk, A. Photocatalytic degradation of organic dye over bismuth vanadate–silicon dioxide–graphene oxide nanocomposite under visible light irradiation. J. Aust. Ceram. Soc. 2020, 56, 1237–1241. [Google Scholar] [CrossRef]
- Khojasteh, H.; Salavati-Niasari, M.; Sangsefidi, F.S. Photocatalytic evaluation of RGO/TiO2NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation. J. Alloys Compd. 2018, 746, 611–618. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Fang, L.; Yang, H.; Zuo, Y.; Gao, J.; He, G.; Sun, Z. A multifunctional Ag/TiO2/reduced graphene oxide with optimal surface-enhanced Raman scattering and photocatalysis. J. Am. Ceram. Soc. 2019, 102, 4000–4013. [Google Scholar] [CrossRef]
- Mondal, A.; Paul, A.; Srivastava, D.N.; Panda, A.B. Defect- and Phase-Induced Acceleration of Electrocatalytic Hydrogen Production by Ultrathin and Small MoS2-Decorated rGO Sheets. ACS Appl. Nano Mater. 2018, 1, 4622–4632. [Google Scholar] [CrossRef]
- Zhang, F.-J.; Kong, C.; Li, X.; Sun, X.-Y.; Xie, W.-J.; Oh, W.-C. Synthesis and Characterization of MoS2/Graphene-TiO2 Ternary Photocatalysts for High-Efficiency Hydrogen Production under Visible Light. J. Korean Ceram. Soc. 2019, 56, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Hanniet, Q.; Boussmen, M.; Bares, J.; Huon, V.; Iatsunskyi, I.; Coy, E.; Bechelany, M.; Gervais, C.; Voiry, D.; Miele, P.; et al. Investigation of polymer-derived Si–(B)–C–N ceramic/reduced graphene oxide composite systems as active catalysts towards the hydrogen evolution reaction. Sci. Rep. 2020, 10, 22003. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Novajra, G.; Vitale-Brovarone, C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioeng. Biotechnol. 2015, 3, 202. [Google Scholar] [CrossRef] [Green Version]
- Salinas, A.J.; Vallet-Regí, M. Bioactive ceramics: From bone grafts to tissue engineering. RSC Adv. 2013, 3, 11116. [Google Scholar] [CrossRef]
- Cheng, X.; Wan, Q.; Pei, X. Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. Nanoscale Res. Lett. 2018, 13, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Sun, J.; He, S.; Mingliang, T.; Renjie, C. The application of graphene-based biomaterials in biomedicine. Am. J. Transl. Res. 2019, 11, 3246. [Google Scholar]
- Peng, Z.; Zhao, T.; Zhou, Y.; Li, S.; Li, J.; Leblanc, R.M. Bone Tissue Engineering via Carbon-Based Nanomaterials. Adv. Healthc. Mater. 2020, 9, 1901495. [Google Scholar] [CrossRef]
- Banerjee, A.N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018, 8, 20170056. [Google Scholar] [CrossRef]
- Turk, M.; Deliormanlı, A.M. Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. J. Biomater. Appl. 2017, 32, 28–39. [Google Scholar] [CrossRef]
- Raucci, M.G.; Giugliano, D.; Longo, A.; Zeppetelli, S.; Carotenuto, G.; Ambrosio, L. Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J. Tissue Eng. Regen. Med. 2017, 11, 2204–2216. [Google Scholar] [CrossRef]
- Du, Z.; Wang, C.; Zhang, R.; Wang, X.; Li, X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int. J. Nanomed. 2020, 15, 7523–7551. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Z.; Zhao, L.; Liu, W.; Si, P.; Lan, J. Synthesis and characterization of multilayer graphene oxide on yttria-zirconia ceramics for dental implant. J. Mater. Res. 2020, 35, 2466–2477. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, L.; Duan, Z.; Zhao, K.; Wu, Z. Graphene/barium titanate/polymethyl methacrylate bio-piezoelectric composites for biomedical application. Ceram. Int. 2020, 46, 6567–6574. [Google Scholar] [CrossRef]
- Eqtesadi, S.; Motealleh, A.; Wendelbo, R.; Ortiz, A.L.; Miranda, P. Reinforcement with reduced graphene oxide of bioactive glass scaffolds fabricated by robocasting. J. Eur. Ceram. Soc. 2017, 37, 3695–3704. [Google Scholar] [CrossRef]
- Rho, J.-Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, H.; Lin, X.; Ma, L.; Zheng, X.; Liu, Y.; Huang, P.; Yu, S.; Zhang, W.; Lin, M.; et al. 3D Interpenetrated Graphene Foam/58S Bioactive Glass Scaffolds for Electrical-Stimulation-Assisted Differentiation of Rabbit Mesenchymal Stem Cells to Enhance Bone Regeneration. J. Biomed. Nanotechnol. 2019, 15, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cheng, C.; He, Y.; Lyu, C.; Wang, Y.; Yu, J.; Qiu, L.; Zou, D.; Li, D. Multilayered Graphene Hydrogel Membranes for Guided Bone Regeneration. Adv. Mater. 2016, 28, 4025–4031. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Peng, C.; Zhou, X.; Chen, L.; Wang, W.; Zhang, Y.; Ma, P.X.; He, C. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon N. Y. 2017, 116, 325–337. [Google Scholar] [CrossRef]
- Kim, J.-W.; Shin, Y.C.; Lee, J.; Bae, E.; Jeon, Y.; Jeong, C.; Yun, M.; Lee, S.; Han, D.; Huh, J. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis. Int. J. Mol. Sci. 2017, 18, 1725. [Google Scholar] [CrossRef]
- Fu, C.; Bai, H.; Zhu, J.; Niu, Z.; Wang, Y.; Li, J.; Yang, X.; Bai, Y. Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide. PLoS ONE 2017, 12, e0188352. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X.; Ong’achwa Machuki, J.; Dai, C.; Li, Y.; Guo, K.; Gao, F. Three-Dimensionally N-Doped Graphene–Hydroxyapatite/Agarose as an Osteoinductive Scaffold for Enhancing Bone Regeneration. ACS Appl. Bio Mater. 2019, 2, 299–310. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Su, G.; Sun, X.; Wang, Y.; Fang, Z.; Chen, M.; Zhang, Q. Graphene Oxide Incorporated Collagen/Nano-Hydroxyapatite Composites with Improved Mechanical Properties for Bone Repair Materials. J. Biomater. Tissue Eng. 2017, 7, 1000–1007. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Zou, L.; Xu, G.; Geng, Y. Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem. Eng. J. 2019, 378, 122174. [Google Scholar] [CrossRef]
- Dai, C.; Li, Y.; Pan, W.; Wang, G.; Huang, R.; Bu, Y.; Liao, X.; Guo, K.; Gao, F. Three-Dimensional High-Porosity Chitosan/Honeycomb Porous Carbon/Hydroxyapatite Scaffold with Enhanced Osteoinductivity for Bone Regeneration. ACS Biomater. Sci. Eng. 2020, 6, 575–586. [Google Scholar] [CrossRef]
- Liang, C.; Luo, Y.; Yang, G.; Xia, D.; Liu, L.; Zhang, X.; Wang, H. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Res. Lett. 2018, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Xiao, C.; Huang, Y.; Chen, M.; Wei, W.; Yang, X.; Zhou, H.; Bi, X.; Lu, L.; Ruan, J.; et al. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv. 2018, 8, 17860–17877. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Bao, R.-Y.; Shi, X.-J.; Yang, W.; Yang, M.-B. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr. Polym. 2017, 155, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Nie, W.; Chen, L.; McCoul, D.; Liu, D.; Zhang, X.; Ji, Y.; Yu, B.; He, C. Self-Assembled Hydroxyapatite-Graphene Scaffold for Photothermal Cancer Therapy and Bone Regeneration. J. Biomed. Nanotechnol. 2018, 14, 2003–2017. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, A.R.; Sasikala, A.R.K.; Park, C.H.; Kim, C.S. A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J. Ind. Eng. Chem. 2017, 46, 182–191. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, W.; Bi, S.; Li, R.; Hu, H.; Lin, H.; Tuan, R.S.; Khor, K.A. Incorporating silica-coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance. J. Biomed. Mater. Res. Part A 2020, 108, 1016–1027. [Google Scholar] [CrossRef]
- Udduttula, A.; Teng, B.; Chandrashekar, B.N.; Li, J.; Yu, X.; Liu, C.; Shi, R.; Cheng, C.; Zhang, J.V.; Ren, P. Novel Sr5(PO4)2SiO4-graphene nanocomposites for applications in bone regeneration in vitro. Appl. Surf. Sci. 2020, 507, 145176. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Fu, L.; Ye, S.; Wang, M.; Zhou, Y. Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect. Molecules 2019, 24, 1669. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Sun, H.; Wang, K.; Zheng, W.; Lu, X.; Ren, F. Graphene oxide nanolayers as nanoparticle anchors on biomaterial surfaces with nanostructures and charge balance for bone regeneration. J. Biomed. Mater. Res. Part A 2017, 105, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Malekpour, H.; Balandin, A.A. Graphene Applications in Advanced Thermal Management. In Nanopackaging; Springer International Publishing: Cham, Switzerland, 2018; pp. 823–865. [Google Scholar]
- Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, H.; Cheng, H.-M.; Ruoff, R.S. Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2018, 5, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Lin, T.; Huang, F.; Zhong, Y.; Wang, Z.; Tang, Y.; Bi, H.; Wan, D.; Lin, J. Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage. Adv. Funct. Mater. 2013, 23, 2263–2269. [Google Scholar] [CrossRef]
- Zhou, M.; Bi, H.; Lin, T.; Lu, X.; Wan, D.; Huang, F.; Lin, J. Heat transport enhancement of thermal energy storage material using graphene/ceramic composites. Carbon N. Y. 2014, 75, 314–321. [Google Scholar] [CrossRef]
- Garman, P.D.; Johnson, J.M.; Talesara, V.; Yang, H.; Du, X.; Pan, J.; Zhang, D.; Yu, J.; Cabrera, E.; Yen, Y. Dual Silicon Oxycarbide Accelerated Growth of Well-Ordered Graphitic Networks for Electronic and Thermal Applications. Adv. Mater. Technol. 2019, 4, 1800324. [Google Scholar] [CrossRef]
- Garman, P.D.; Johnson, J.M.; Talesara, V.; Yang, H.; Zhang, D.; Castro, J.; Lu, W.; Hwang, J.; Lee, L.J. Silicon Oxycarbide Accelerated Chemical Vapor Deposition of Graphitic Networks on Ceramic Substrates for Thermal Management Enhancement. ACS Appl. Nano Mater. 2019, 2, 452–458. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.H.; Shen, X.; Gurlo, A. Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Adv. Mater. 2020, 32, 1907176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pan, J.; Cabrera, E.D.; Garman, P.D.; Wu, M.; Li, Y.; Zhang, D.; Yu, J.; Yi, A.Y.; Castro, J.; et al. Highly Oriented Graphitic Networks Grown by Chemical Vapor Deposition as Thermal Interface Materials. Ind. Eng. Chem. Res. 2020, 59, 22501–22508. [Google Scholar] [CrossRef]
- An, F.; Li, X.; Min, P.; Li, H.; Dai, Z.; Yu, Z.-Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon N. Y. 2018, 126, 119–127. [Google Scholar] [CrossRef]
- Feng, C.-P.; Wan, S.; Wu, W.; Bai, L.; Bao, R.; Liu, Z.; Yang, M.; Chen, J.; Yang, W. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol. 2018, 167, 456–462. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, D.; Deng, B.; Xu, X.; Nian, Q.; Jin, S.; Leedy, K.D.; Li, H.; Cheng, G.J. Flyweight, Superelastic, Electrically Conductive, and Flame-Retardant 3D Multi-Nanolayer Graphene/Ceramic Metamaterial. Adv. Mater. 2017, 29, 1605506. [Google Scholar] [CrossRef]
- Xiong, Y.; Hu, J.; Nie, X.; Wei, D.; Zhang, N.; Peng, S.; Dong, X.; Li, Y.; Fang, P. One-step firing of carbon fiber and ceramic precursors for high performance electro-thermal composite: Influence of graphene coating. Mater. Des. 2020, 191, 108633. [Google Scholar] [CrossRef]
- Kumar, C.V.; Kandasubramanian, B. Advances in Ablative Composites of Carbon Based Materials: A Review. Ind. Eng. Chem. Res. 2019, 58, 22663–22701. [Google Scholar] [CrossRef]
- Garcia, E.; Nistal, A.; Khalifa, A.; Essa, Y.; Martin de la Escalera, F.; Osendi, M.I.; Miranzo, P. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings. ACS Appl. Mater. Interfaces 2015, 7, 17656–17662. [Google Scholar] [CrossRef]
- Marraco-Borderas, C.; Nistal, A.; Garcia, E.; Sainz, M.A.; de la Escalera, F.M.; Essa, Y.; Miranzo, P. Análisis de la adhesión de recubrimientos del sistema Y2O3-Al2O3-SiO2 sobre sustratos de interés para la industria aeroespacial. Bol. Soc. Esp. Cerám. Vidr. 2016, 55, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E.; Nistal, A.; Osendi, M.I.; Miranzo, P. Superior Performance of Ablative Glass Coatings Containing Graphene Nanosheets. J. Am. Ceram. Soc. 2016, 99, 4066–4072. [Google Scholar] [CrossRef]
- Ramírez, C.; Wang, Q.; Belmonte, M.; Miranzo, P.; Osendi, M.I.; Sheldon, B.W.; Padture, N.P. Direct in situ observation of toughening mechanisms in nanocomposites of silicon nitride and reduced graphene-oxide. Scr. Mater. 2018, 149, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Yuan, J.; Chen, M.; Si, D.; Xu, C. Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering. Ceram. Int. 2019, 45, 23781–23787. [Google Scholar] [CrossRef]
- Kośla, K.; Olejnik, M.; Olszewska, K. Preparation and properties of composite materials containing graphene structures and their applicability in personal protective equipment: A Review. Rev. Adv. Mater. Sci. 2020, 59, 215–242. [Google Scholar] [CrossRef]
- Belmonte, M.; Miranzo, P.; Osendi, M.I. Contact damage resistant SiC/graphene nanofiller composites. J. Eur. Ceram. Soc. 2018, 38, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Berman, D.; Erdemir, A.; Sumant, A.V. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Kasar, A.K.; Menezes, P.L. Synthesis and recent advances in tribological applications of graphene. Int. J. Adv. Manuf. Technol. 2018, 97, 3999–4019. [Google Scholar] [CrossRef]
- Belmonte, M. Contact Damage Resistance and Tribological Behavior of Ceramic/Carbon Nanostructure Composites. In Reference Module in Materials Science and Materials Engineering; Pomeroy, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Llorente, J.; Belmonte, M. Rolled and twisted graphene flakes as self-lubricant and wear protecting fillers into ceramic composites. Carbon N. Y. 2020, 159, 45–50. [Google Scholar] [CrossRef]
- Chen, Z.; Qi, H.; Zhao, B.; Zhou, Y.; Shi, L.; Li, H.N.; Ding, W. On the tribology and grinding performance of graphene-modified porous composite-bonded CBN wheel. Ceram. Int. 2021, 47, 3259–3266. [Google Scholar] [CrossRef]
- Cui, E.; Zhao, J.; Wang, X.; Song, S. Cutting performance, failure mechanisms and tribological properties of GNPs reinforced Al2O3/Ti(C,N) ceramic tool in high speed turning of Inconel 718. Ceram. Int. 2020, 46, 18859–18867. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Jiang, Z.; Lan, J.; Zhao, L.; Si, P. Effect of graphene oxide on the mechanical, tribological, and biological properties of sintered 3Y–ZrO2/GO composite ceramics for dental implants. Ceram. Int. 2020, 47, 6940–6946. [Google Scholar] [CrossRef]
- Balázsi, C.; Fogarassy, Z.; Tapaszto, O.; Kailer, A.; Schroder, C.; Parchoviansky, M.; Galusek, D.; Dusza, J.; Balazsi, K. Si3N4 /graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. J. Eur. Ceram. Soc. 2017, 37, 3797–3804. [Google Scholar] [CrossRef]
- Zhang, W.; Schroder, C.; Schluter, B.; Knoch, M.; Dusza, j.; Sedlak, R.; Mulhaupt, R.; Kailer, A. Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment. Tribol. Lett. 2018, 66, 121. [Google Scholar] [CrossRef]
- Llorente, J.; Ramírez, C.; Belmonte, M. High graphene fillers content for improving the tribological performance of silicon nitride-based ceramics. Wear 2019, 430–431, 183–190. [Google Scholar] [CrossRef]
- Markandan, K.; Zhang, Z.; Chin, J.; Cheah, K.H.; Tang, H.-B. Fabrication and preliminary testing of hydroxylammonium nitrate (HAN)-based ceramic microthruster for potential application of nanosatellites in constellation formation flying. Microsyst. Technol. 2019, 25, 4209–4217. [Google Scholar] [CrossRef] [Green Version]
- Picot, O.T.; Rocha, V.G.; Ferraro, C.; Ni, N.; D’elia, E.; Meille, S.; Chevalier, J.; Saunders, T.; Peijs, T.; Reece, M.J.; et al. Using graphene networks to build bioinspired self-monitoring ceramics. Nat. Commun. 2017, 8, 14425. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Wu, G.-P.; Chen, C.-M.; Yang, Y.; Zhang, S.-C.; Lu, C.-X. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces. Carbon N. Y. 2013, 52, 613–616. [Google Scholar] [CrossRef]
- Han, W.; Zhao, G.; Zhang, X.; Zhou, S.; Wang, P.; An, Y.; Xu, B. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability. Carbon N. Y. 2015, 95, 157–165. [Google Scholar] [CrossRef]
- Wei, J.-J.; Long, W.-J.; Fang, C.-L.; Li, H.-D.; Guo, Y.-G. Effect of Graphene Oxide on the Damping Capability of Recycled Mortar. IOP Conf. Ser. Mater. Sci. Eng. 2018, 317, 012001. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Zhou, D.; Sun, S.; Wu, X.; Yu, X.; Hou, J.; Dong, X.; Han, B. Self-damping cementitious composites with multi-layer graphene. Mater. Res. Express 2017, 4, 075605. [Google Scholar] [CrossRef]
- Long, W.-J.; Wei, J.-J.; Xing, F.; Khayat, K.H. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cem. Concr. Compos. 2018, 93, 127–139. [Google Scholar] [CrossRef]
- Yang, H.; Cui, H.; Tang, W.; Li, Z.; Han, N.; Xing, F. A critical review on research progress of graphene/cement based composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 273–296. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.; Deng, X.; Liu, J.; Zheng, Z.; Hui, D. Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 2020, 9, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Guo, X.; Song, L.; Song, Y.; Dai, G.; Liu, J. An intensive review on the role of graphene oxide in cement-based materials. Constr. Build. Mater. 2020, 241, 117939. [Google Scholar] [CrossRef]
- Mokhtar, M.M.; Abo-El-Enein, S.A.; Hassaan, M.Y.; Morsy, M.S.; Khalil, M.H. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement. Constr. Build. Mater. 2017, 138, 333–339. [Google Scholar] [CrossRef]
- Mohammed, A.; Sanjayan, J.G.; Nazari, A.; Al-Saadi, N.T.K. Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature. Aust. J. Civ. Eng. 2017, 15, 61–71. [Google Scholar] [CrossRef]
- Lu, L.; Ouyang, D. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets. Nanomaterials 2017, 7, 187. [Google Scholar] [CrossRef]
- Long, W.-J.; Wei, J.-J.; Ma, H.; Xing, F. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites. Nanomaterials 2017, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Lv, S.H.; Deng, L.J.; Yang, W.Q.; Zhou, Q.F.; Cui, Y.Y. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites. Cem. Concr. Compos. 2016, 66, 1–9. [Google Scholar] [CrossRef]
- Hu, M.; Guo, J.; Li, P.; Chen, D.; Xu, Y.; Feng, Y.; Yu, Y.; Zhang, H. Effect of characteristics of chemical combined of graphene oxide-nanosilica nanocomposite fillers on properties of cement-based materials. Constr. Build. Mater. 2019, 225, 745–753. [Google Scholar] [CrossRef]
- Wang, N.; Wang, S.; Tang, L.; Ye, L.; Cullbrand, B.; Zehri, A.; Tebikachew, B.E.; Liu, J. Improved Interfacial Bonding Strength and Reliability of Functionalized Graphene Oxide for Cement Reinforcement Applications. Chem. A Eur. J. 2020, 26, 6561–6568. [Google Scholar] [CrossRef] [PubMed]
- Krystek, M.; Pakulski, D.; Patroniak, V.; Gorski, M.; Szojda, L.; Ciesielski, A.; Samori, P. High-Performance Graphene-Based Cementitious Composites. Adv. Sci. 2019, 6, 1801195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, M.S.D.C.D.; Vasquez, M.R. Plasma-functionalized exfoliated multilayered graphene as cement reinforcement. Compos. Part B Eng. 2019, 160, 573–585. [Google Scholar] [CrossRef]
- Ho, V.D.; Ng, C.; Ozbakkaloglu, T.; Goodwin, A.; McGuckin, C.; Karunagaran, R.U.; Losic, D. Influence of pristine graphene particle sizes on physicochemical, microstructural and mechanical properties of Portland cement mortars. Constr. Build. Mater. 2020, 264, 120188. [Google Scholar] [CrossRef]
- Rhee, I.; Lee, J.-S.; Kim, J.H.; Kim, Y.A. Thermal performance, freeze-and-thaw resistance, and bond strength of cement mortar using rice husk-derived graphene. Constr. Build. Mater. 2017, 146, 350–359. [Google Scholar] [CrossRef]
- Silva, R.A.E.; Guetti, P.D.; da Luz, M.S.; Rouxinol, F.; Gelamo, R.V. Enhanced properties of cement mortars with multilayer graphene nanoparticles. Constr. Build. Mater. 2017, 149, 378–385. [Google Scholar] [CrossRef]
- Bautista-Gutierrez, K.P.; Herrera-May, A.L.; Santamaria-Lopez, J.M.; Honorato-Moreno, A.; Zamora-Castro, S.A. Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges. Materials 2019, 12, 3548. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.Y.; You, I.; Zi, G.; Lee, S.J. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement 2019, 134, 750–761. [Google Scholar] [CrossRef]
- Rehman, S.; Ibrahim, Z.; Memon, S.; Javed, M.; Khushnood, R. A Sustainable Graphene Based Cement Composite. Sustainability 2017, 9, 1229. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Li, Y.; Zheng, J.; Wang, S. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Compos. Part B Eng. 2019, 177, 107437. [Google Scholar] [CrossRef]
- Fulham-Lebrasseur, R.; Sorelli, L.; Conciatori, D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions. Constr. Build. Mater. 2020, 237, 117470. [Google Scholar] [CrossRef]
- Pisello, A.L.; D’Alessandro, A.; Sambuco, S.; Rallini, M.; Ubertini, F.; Asdrubali, F.; Materazzi, A.L.; Cotana, F. Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability. Sol. Energy Mater. Sol. Cells 2017, 161, 77–88. [Google Scholar] [CrossRef]
- Dimov, D.; Amit, I.; Gorrie, O.; Barnes, M.D.; Townsend, N.J.; Neves, A.I.S.; Withers, F.; Russo, S.; Craciun, M.F. Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications. Adv. Funct. Mater. 2018, 28, 1705183. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J. Thermal enhancement of paraffin/hydrophobic expanded perlite granular phase change composite using graphene nanoplatelets. Energy Build. 2018, 169, 206–215. [Google Scholar] [CrossRef]
- Mohammed, A.; Al-Saadi, N.T.K. Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents. Polymers 2020, 12, 2900. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, W.; Cao, K.; Hu, X.; Gao, L.; Lu, Y. Architectured graphene and its composites: Manufacturing and structural applications. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106177. [Google Scholar] [CrossRef]
- Peretyagin, N.; Seleznev, A.; Peretyagin, P. Direct ink writing technology (3d printing) of graphene-based ceramic nanocomposites: A review. Nanomaterials 2020, 10, 1300. [Google Scholar] [CrossRef]
- Markandan, K.; Chin, J.K.; Tan, M.T.T. Recent progress in graphene based ceramic composites: A review. J. Mater. Res. 2017, 32, 84–106. [Google Scholar] [CrossRef] [Green Version]
- You, X.; Yang, J.; Dong, S. Structural and functional applications of 3D-printed graphene-based architectures. J. Mater. Sci. 2021, 56, 9007–9046. [Google Scholar] [CrossRef]
- Travitzky, N.; Bonet, A.; Dermeik, B.; Fey, T.; Filbert-Demut, I.; Schlier, L.; Schlordt, T.; Greil, P. Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 2014, 16, 729–754. [Google Scholar] [CrossRef]
- Zocca, A.; Colombo, P.; Gomes, C.M.; Günster, J. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. J. Am. Ceram. Soc. 2015, 98, 1983–2001. [Google Scholar] [CrossRef]
- Román-Manso, B.; Figueiredo, F.M.; Achiaga, B.; Barea, R.; Perez-Coll, D.; Morelos-Gomez, A.; Terrones, M.; Osendi, M.I.; Belmonte, M.; Miranzo, P. Electrically functional 3D-architectured graphene/SiC composites. Carbon N. Y. 2016, 100, 318–328. [Google Scholar] [CrossRef]
- You, X.; Yang, J.; Huang, K.; Wang, M.; Zhang, X.; Dong, S. Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon N. Y. 2019, 155, 215–222. [Google Scholar] [CrossRef]
- Román-Manso, B.; Moyano, J.J.; Pérez-Coll, D.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Polymer-derived ceramic/graphene oxide architected composite with high electrical conductivity and enhanced thermal resistance. J. Eur. Ceram. Soc. 2018, 38, 2265–2271. [Google Scholar] [CrossRef]
- Moyano, J.J.; Mosa, J.; Aparicio, M.; Perez-Coll, D.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Strong and light cellular silicon carbonitride—Reduced graphene oxide material with enhanced electrical conductivity and capacitive response. Addit. Manuf. 2019, 30, 100849. [Google Scholar] [CrossRef]
- Moyano, J.J.; Mosa, J.; Aparicio, M.; Pérez-Coll, D.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Corrigendum to “Strong and light cellular silicon carbonitride—Reduced graphene oxide material with enhanced electrical conductivity and capacitive response”. Addit. Manuf. 2020, 32, 101054. [Google Scholar] [CrossRef]
- Pierin, G.; Grotta, C.; Colombo, P.; Mattevi, C. Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer. J. Eur. Ceram. Soc. 2016, 36, 1589–1594. [Google Scholar] [CrossRef]
- García-Tuñón, E.; Feilden, E.; Zheng, H.; D’Elia, E.; Leong, A.; Saiz, E. Graphene Oxide: An All-in-One Processing Additive for 3D Printing. ACS Appl. Mater. Interfaces 2017, 9, 32977–32989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuaje, J.; Rama, A.; Mallo-Abreu, A.; Boado, M.G.; Majellaro, M.; Tubio, C.R.; Prieto, R.; Garcia-Mera, X.; Guitian, F.; Sotelo, E.; et al. Catalytic performance of a metal-free graphene oxide-Al2O3 composite assembled by 3D printing. J. Eur. Ceram. Soc. 2021, 41, 1399–1406. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, S.; Li, L.; Bai, S. High thermal conductivity polylactic acid composite for 3D printing: Synergistic effect of graphene and alumina. Polym. Adv. Technol. 2020, 31, 1291–1299. [Google Scholar] [CrossRef]
- Moyano, J.J.; Loizillon, J.; Perez-Coll, D.; Belmonte, M.; Miranzo, P.; Grosso, D.; Osendi, M.I. Robust and conductive mesoporous reduced graphene oxide-silica hybrids achieved by printing and the sol gel route. J. Eur. Ceram. Soc. 2020, 41, 2908–2917. [Google Scholar] [CrossRef]
- Jakus, A.E.; Shah, R.N. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J. Biomed. Mater. Res. Part A 2017, 105, 274–283. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, J. Photothermal effect of 3D printed hydroxyapatite composite scaffolds incorporated with graphene nanoplatelets. Ceram. Int. 2020, 47, 6336–6340. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, D.; Xu, M.; Yao, Q.; Chang, J.; Wu, C. 3D-printed bioceramic scaffolds with a Fe3O4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J. Mater. Chem. B 2016, 4, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhou, G.X.; He, P.G.; Yang, Z.H.; Jia, D.C. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon N. Y. 2017, 117, 421–426. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Cheng, H.; Mou, Y.; Liu, J.; Peng, Y.; Chen, M. Fabrication of 3D structures via direct ink writing of kaolin/graphene oxide composite suspensions at ambient temperature. Ceram. Int. 2019, 45, 18972–18979. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Peng, Y.; Wang, A.; Wu, Z.; Chen, M. Effective heat dissipation of high-power LEDs through creation of three-dimensional ceramic substrate with kaolin/graphene suspension. J. Alloys Compd. 2020, 817, 152779. [Google Scholar] [CrossRef]
- Wu, T.C.; De Luca, A.; Zhong, Q.; Zhu, X.; Ogbeide, O.; Um, D.; Hu, G.; Albrow-Owen, T.; Udrea, F.; Hasan, T. Inkjet-printed CMOS-integrated graphene–metal oxide sensors for breath analysis. NPJ 2D Mater. Appl. 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Shen, Y.; Yin, J.; Qian, J.; Huang, Y. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications. ACS Appl. Mater. Interfaces 2018, 10, 10461–10470. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.; Bae, J.; Hassan, A.; Ali, S.; Lee, C.H.; Choi, Y. Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate. Compos. Part A Appl. Sci. Manuf. 2018, 107, 519–528. [Google Scholar] [CrossRef]
- Cook, B.; Gong, M.; Corbin, A.; Ewing, D.; Tramble, A.; Wu, J. Inkjet-Printed Imbedded Graphene Nanoplatelet/Zinc Oxide Bulk Heterojunctions Nanocomposite Films for Ultraviolet Photodetection. ACS Omega 2019, 4, 22497–22503. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Harden-Chaters, W.; Han, S.D.; Zhan, S.; Li, B.; Bang, S.Y.; Choi, H.W.; Lee, S.; Hou, B.; Occhipinti, L.G.; et al. Nano-to-Microporous Networks via Inkjet Printing of ZnO Nanoparticles/Graphene Hybrid for Ultraviolet Photodetectors. ACS Appl. Nano Mater. 2020, 3, 4454–4464. [Google Scholar] [CrossRef]
- Wajahat, M.; Kim, J.H.; Ahn, J.; Lee, S.; Bae, J.; Pyo, J.; Seol, S.K. 3D printing of Fe3O4 functionalized graphene-polymer (FGP) composite microarchitectures. Carbon N. Y. 2020, 167, 278–284. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Zhang, L.; Shi, Y.; Jia, L.; Zhang, Q.; Xu, X. Flexible Mn3O4 nanosheet/reduced graphene oxide nanosheet paper-like electrodes for electrochemical energy storage and three-dimensional multilayers printing. Mater. Lett. 2018, 213, 100–103. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, C.; Cheng, D.; Zhou, H.; Liu, X.; Xie, P.; Zhao, Q.; Zhang, D.; Fan, T. Architectured Leaf-Inspired Ni0.33Co0.66S2/Graphene Aerogels via 3D Printing for High-Performance Energy Storage. Adv. Funct. Mater. 2018, 28, 1805057. [Google Scholar] [CrossRef]
- Fu, K.; Wang, Y.; Yan, C.; Yao, Y.; Chen, Y.; Dai, J.; Lacey, S.; Wang, Y.; Wan, J.; Li, T.; et al. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. Adv. Mater. 2016, 28, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Yan, P.; Tekik, H.; Elangovan, A.; Wang, J.; Lin, D.; Li, J. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater. Des. 2019, 170, 107689. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, C.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Applications of Ceramic/Graphene Composites and Hybrids. Materials 2021, 14, 2071. https://doi.org/10.3390/ma14082071
Ramírez C, Belmonte M, Miranzo P, Osendi MI. Applications of Ceramic/Graphene Composites and Hybrids. Materials. 2021; 14(8):2071. https://doi.org/10.3390/ma14082071
Chicago/Turabian StyleRamírez, Cristina, Manuel Belmonte, Pilar Miranzo, and Maria Isabel Osendi. 2021. "Applications of Ceramic/Graphene Composites and Hybrids" Materials 14, no. 8: 2071. https://doi.org/10.3390/ma14082071
APA StyleRamírez, C., Belmonte, M., Miranzo, P., & Osendi, M. I. (2021). Applications of Ceramic/Graphene Composites and Hybrids. Materials, 14(8), 2071. https://doi.org/10.3390/ma14082071