The Role of Inorganic-Organic Bio-Fillers Containing Kraft Lignin in Improvement in Functional Properties of Polyethylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MgO-Lignin Dual Bio-Fillers
2.3. Preparation of LDPE/PE-g-MAH/MgO-Lignin Composites
2.4. Differential Scanning Calorimetry (DSC) Analysis
2.5. Microstructural Investigations
2.6. UV-Vis Absorption Test
2.7. Gas Permeability and Water Vapor Permeation Tests
3. Results and Discussion
3.1. Thermal Behavior of the LDPE/MgO-Lignin Composites
3.2. Microscopic Observation
3.3. UV Absorption Properties
3.4. Barrier Properties of Studied Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khumkomgool, A.; Saneluksana, T.; Harnkarnsujarit, N. Active meat packaging from thermoplastic cassava starch containing sappan and cinnamon herbal extracts via LLDPE blown-film extrusion. Food Packag. Shelf Life 2020, 26, 100557. [Google Scholar] [CrossRef]
- El-Zawawy, W.K.; Ibrahim, M.M.; Belgacem, M.N.; Dufresne, A. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film. Mater. Chem. Phys. 2011, 131, 348–357. [Google Scholar] [CrossRef]
- Tavares, L.B.; Ito, N.M.; Salvadori, M.C.; dos Santos, D.J.; Rosa, D.S. PBAT/kraft lignin blend inflexible laminated food packaging: Peeling resistance and thermal degradability. Polym. Test. 2018, 67, 169–176. [Google Scholar] [CrossRef]
- Guilhen, A.; Gadioli, R.; Fernandes, F.C.; Waldman, W.R.; De Paoli, M.A. High-density green polyethylene biocomposite reinforced with cellulose fibers and using lignin as antioxidant. J. Appl. Polym. Sci. 2017, 134, 45219. [Google Scholar] [CrossRef]
- Kovalcik, A.; Machovsky, M.; Kozakova, Z.; Koller, M. Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React. Funct. Polym. 2015, 94, 25–34. [Google Scholar] [CrossRef]
- Rahman, M.A.; De Santis, D.; Spagnoli, G.; Ramorino, G.; Penco, M.; Phuong, V.T.; Lazzeri, A. Biocomposites based on lignin and plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 2013, 129, 202–214. [Google Scholar] [CrossRef]
- Hu, L.; Stevanovic, T.; Rodrigue, D. Compatibilization of kraft lignin-polyethylene composites using unreactive compatibilizers. J. Appl. Polym. Sci. 2014, 131, 41040. [Google Scholar] [CrossRef]
- Le Digabel, F.; Averous, L. Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydr. Polym. 2006, 66, 537–545. [Google Scholar] [CrossRef]
- Borysiak, S.; Paukszta, D. Mechanical Properties of Lignocellulosic/Polypropylene Composites. Mol. Cryst. Liq. Cryst. 2008, 484, 13/[379]–22/[388]. [Google Scholar] [CrossRef]
- Liu, R.; Peng, Y.; Cao, J.; Chen, Y. Comparison on properties of lignocelulosic flour/polymer composites by using wood, cellulose, and lignin as a fillers. Compos. Sci. Technol. 2014, 103, 1–7. [Google Scholar] [CrossRef]
- Barzegari, M.R.; Alemdar, A.; Zhang, Y.; Rodrigue, D. Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym. Compos. 2012, 33, 353–361. [Google Scholar] [CrossRef]
- Kun, D.; Pukanszky, B. Polymer/lignin blends: Interactions, properties, applications. Eur. Polym. J. 2017, 93, 618–641. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Wang, Q.; Zhang, Y.; Zhou, X.; Li, R.; Liu, J.; Li, Y.; Lv, H. In-situ formation of low-dimensional, magnetic core shell nanocrystal for electromagnetic dissipation. Compos. B 2021, 214, 108774. [Google Scholar] [CrossRef]
- Huang, C.; Ma, J.; Zhang, W.; Huang, G.; Yong, Q. Preparation of Lignosulfonates from Biorefinery Lignins by Sulfomethylation and Their Application as a Water Reducer for Concrete. Polymers 2018, 10, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouteau, C.; Dole, P.; Cathala, B.; Averous, L.; Boquillon, N. Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stabil. 2003, 81, 9–18. [Google Scholar] [CrossRef]
- Forsgren, L.; Noyan, E.C.B.; Vega, A.; Yarahmadi, N.; Boldizar, A. Thethermo-oxidative durability of polyethylene reinforced with wood-based fibres. Polym. Degrad. Stabil. 2020, 181, 109374. [Google Scholar] [CrossRef]
- Canetti, M.; Bertini, F.; De Chirico, A.; Audisio, G. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym. Degrad. Stabil. 2006, 91, 494–498. [Google Scholar] [CrossRef]
- Gregorova, A.; Cibulkova, Z.; Kosikova, B.; Simon, P. Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stabil. 2005, 89, 553–558. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C.; Weng, Y. Enhancing gas barrier performance of polylactic acid/lignin composite films through cooperative effect of compatibilization and nucleation. J. Appl. Polym. Sci. 2021, 138, 50199. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W.; Won, K. Preparation of poly(lactide)/lignin/silver nanoparticles composite films with UV light barrier and antibacterial properties. Int. J. Biol. Macromol. 2018, 107, 1724–1731. [Google Scholar] [CrossRef]
- Shankar, S.; Reddy, J.P.; Rhim, J.W. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int. J. Biol. Macromol. 2015, 81, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Toh, K.; Nakano, S.; Yokoyama, H.; Ebe, K.; Gotoh, K.; Noda, H. Anti-deterioration effect of lignin as an ultraviolet absorbent in polypropylene and polyethylene. Polym. J. 2005, 37, 633–635. [Google Scholar] [CrossRef] [Green Version]
- Domenek, S.; Louaifi, A.; Guinault, A.; Baumberger, S. Potential of lignins as antioxidant additive in active biodegradable packaging materials. J. Polym. Environ. 2013, 21, 692–701. [Google Scholar] [CrossRef] [Green Version]
- De Chiricoa, A.; Armanini, M.; Chini, P.; Cioccolo, G.; Provasoli, F.; Audisio, G. Flame retardants for polypropylene based on lignin. Polym. Degrad. Stabil. 2003, 79, 139–145. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Zhang, X.C.; Su, R.Z. The study of flame retardants on the thermal degradation and charring process of Manchurian ash lignin in the condensed phase. Polym. Degrad. Stabil. 2001, 72, 493–498. [Google Scholar] [CrossRef]
- Gallina, G.; Bravin, E.; Badalucco, C.; Audisio, G.; Armanini, M.; De Chirico, A.; Provasoli, F. Application of cone calorimeter for the assessment of class of flame retardants for polypropylene. Fire Mater. 1998, 22, 15–18. [Google Scholar] [CrossRef]
- Bula, K.; Kubicki, G.; Jesionowski, T.; Klapiszewski, Ł. MgO-Lignin Dual Phase Filler as an Active Modifier of Polyethylene Film Properties. Materials 2020, 13, 809. [Google Scholar] [CrossRef] [Green Version]
- Bula, K.; Kubicki, G.; Kubiak, A.; Jesionowski, T.; Klapiszewski, Ł. Influence of MgO-Lignin Dual Component Additives on Selected Properties of Low Density Polyethylene. Polymers 2020, 12, 1156. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, Ł.; Bula, K.; Sobczak, M.; Jesionowski, T. Influence of processing con-ditions on the thermal stability and mechanical properties of PP/silica-lignin composites. Int. J. Polym. Sci. 2016, 2016, 1627258. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Mamat, O. The Development and characterization of HDPE-silica sand nanoparticles composites. In Proceedings of the 2011 IEEE Colloquium on Humanities, Science and Engineering, Penang, Malaysia, 5–6 December 2011; pp. 6–11. [Google Scholar]
- Alapati, S.; Meledath, J.T.; Karmarkar, A. Effect of morphology on electrical treeing in low density polyethylene nanocomposites. IET Sci. Meas. Technol. 2014, 8, 60–68. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, G.; Zhang, X.; Yu, B. The research of crystalline morphology and breakdown characteristics of polymer/micro-nano-composites. Materials 2020, 13, 1432. [Google Scholar] [CrossRef] [Green Version]
- Diop, A.; Mijiyawa, F.; Koffi, D.; Kokta, B.V.; Montplaisir, D. Study of lignin dispersion in low-density polyethylene. J. Thermoplast. Compos. Mater. 2015, 28, 1662–1674. [Google Scholar] [CrossRef]
- Olmos, D.; Rodriguez-Gutierrez, E.; Gonzalez-Benito, J. Polymer structures and morphology of low density polyethylene filled with silica nanoparticles. Polym. Eng. Sci. 2012, 33, 2009–2021. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll. 2017, 71, 76–84. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, X.; Zhu, S. Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. ACS Sustain. Chem. Eng. 2016, 4, 4029–4035. [Google Scholar] [CrossRef]
- Mooninta, S.; Poompradub, S.; Prasassarakich, P. Packaging film of PP/LDPE/PLA/clay composite: Physical, barrier and degradable properties. J. Polym. Environ. 2020, 28, 3116–3128. [Google Scholar] [CrossRef]
- Pannirselvan, M.; Genovese, A.; Jollands, M.C.; Bhattacharya, S.N.; Shanks, R.A. Oxygen barrier property of polypropylene-polyether treated clay nanocomposite. Express Polym. Lett. 2008, 2, 429–439. [Google Scholar] [CrossRef]
- Kaboorani, A.; Gray, N.; Hamzeh, Y.; Abdulkhani, A.; Shirmohammadli, Y. Tailoring the low-density polyethylene—Thermoplastic starch composites using cellulose nanocrystals and compatibilizer. Polym. Test. 2021, 93, 107007. [Google Scholar] [CrossRef]
Film Composition | Composition | ||
---|---|---|---|
Polymer Content (%) of Weight | Filler Content (%) of Weight | PE-g-MAH (%) of Weight | |
LDPE | 100.0 | - | - |
LDPE/MgO LDPE/MgO-L (5:1 wt/wt) LDPE/MgO-L (1:1 wt/wt) LDPE/MgO-L (1:5 wt/wt) LDPE/Lignin | 93.0 | 5.0 | 2.0 |
Sample | Tm1 (°C) | ΔHm1 (J/g) | Xc1 (%) | Tc (°C) | Tm2 (°C) | Xc2 (%) |
---|---|---|---|---|---|---|
LDPE | 114.5 | 110.7 | 37.78 | 95.8 | 114.5 | 40.36 |
LDPE/MgO LDPE/MgO-L (5:1 wt/wt) LDPE/MgO-L (1:1 wt/wt) LDPE/MgO-L (1:5 wt/wt) LDPE/Lignin | 114.2 | 108.8 | 37.05 | 96.7 | 113.3 | 39.96 |
115.8 | 104.9 | 35.79 | 95.9 | 114.3 | 39.33 | |
110.2; 115.8 | 104.2 | 35.55 | 96.0 | 113.6 | 40.22 | |
114.0; 116.4 | 114.4 | 39.04 | 96.6 | 114.0 | 37.57 | |
116.6; 114.3 | 118.7 | 40.50 | 96.9 | 113.0 | 41.36 |
Sample | O2 Permeability | S.D. | Change |
---|---|---|---|
(mL/m2/Day atm) | (%) | ||
LDPE | 779.0 | 5.1 | - |
LDPE/MgO LDPE/MgO-L (5:1 wt/wt) LDPE/MgO-L (1:1 wt/wt) LDPE/MgO-L (1:5 wt/wt) LDPE/Lignin | 1292.6 | 118.2 | rise 65 |
920.3 | 54.8 | rise 18 | |
1011.5 | 84.1 | rise 29 | |
635.1 | 33.9 | drop 18 | |
818.1 | 55.1 | rise 5 |
Sample | WVTR | S.D. | Change |
---|---|---|---|
(g/m2/Day) | (%) | ||
LDPE | 8.16 | 0.05 | - |
LDPE/MgO LDPE/MgO-L (5:1 wt/wt) LDPE/MgO-L (1:1 wt/wt) LDPE/MgO-L (1:5 wt/wt) LDPE/Lignin | 5.00 | 0.63 | drop 38 |
3.85 | 0.91 | drop 52 | |
4.57 | 1.17 | drop 43 | |
3.53 | 0.26 | drop 56 | |
2.56 | 0.24 | drop 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bula, K.; Klapiszewski, Ł.; Piasecki, A.; Jesionowski, T. The Role of Inorganic-Organic Bio-Fillers Containing Kraft Lignin in Improvement in Functional Properties of Polyethylene. Materials 2021, 14, 2114. https://doi.org/10.3390/ma14092114
Bula K, Klapiszewski Ł, Piasecki A, Jesionowski T. The Role of Inorganic-Organic Bio-Fillers Containing Kraft Lignin in Improvement in Functional Properties of Polyethylene. Materials. 2021; 14(9):2114. https://doi.org/10.3390/ma14092114
Chicago/Turabian StyleBula, Karol, Łukasz Klapiszewski, Adam Piasecki, and Teofil Jesionowski. 2021. "The Role of Inorganic-Organic Bio-Fillers Containing Kraft Lignin in Improvement in Functional Properties of Polyethylene" Materials 14, no. 9: 2114. https://doi.org/10.3390/ma14092114
APA StyleBula, K., Klapiszewski, Ł., Piasecki, A., & Jesionowski, T. (2021). The Role of Inorganic-Organic Bio-Fillers Containing Kraft Lignin in Improvement in Functional Properties of Polyethylene. Materials, 14(9), 2114. https://doi.org/10.3390/ma14092114