Application of Construction and Demolition Waste in Civil Construction in the Brazilian Amazon—Case Study of the City of Rio Branco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plan
2.2. Information on the Construction Sites
2.3. Sampling
- Class A: mortar, concrete, and ceramic components (e.g., bricks, blocks, tiles, and coverings);
- Class B: plastics, paper, cardboard, metals, glass, and wood;
- Class C: plaster-based residues; and
- Class D: hazardous waste, such as paints, solvents, and oils.
2.4. Characterization of the CDWs and Production of the Recycled Aggregates
2.5. Requirement Tests for Mortars
2.6. Requirement Tests for Structural Concrete
3. Results and Discussion
3.1. Composition and Characterization of Collected Waste
3.2. Composition and Characterization of Collected Waste
3.3. Requirement Testing for Laying/Coating Mortars
3.4. Requirement Testing for Concrete
3.5. Recycling Proposal
4. Conclusions
- Recycled aggregates from construction and demolition waste had lower densities and greater water absorption compared to conventional aggregates such as sand from the river Acre and granitic gravel from the Abunã region;
- The mortars produced with recycled aggregates showed better performances when compared to conventional mortars and had greater water retention; initial adhesion; compressive strength; tensile strength; absorption by immersion and capillarity; and voids index when compared to conventional mortars;
- Concretes produced with recycled aggregates showed lower densities both in the fresh and hardened state; greater water absorption; higher voids index; lower mechanical strength, both to compression and tension; lower ultrasonic pulse velocity; and greater durability to attack by chloride when compared to reference concrete with sand from the Rio Acre and gravel from the Abunã region;
- The concretes produced with recycled aggregates showed properties that allow reinsertion in the civil construction works in Rio Branco compared to the concretes produced with conventional aggregates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Mortars
Appendix A.2. Concrete
References
- CBIC Banco De Dados CBIC. Available online: http://www.cbicdados.com.br/menu/pib-e-investimento/pib-brasil-e-construcao-civil (accessed on 20 November 2020).
- European Commission. Construction and Demolition Waste; European Commission: Luxembourg, 12 December 2008. [Google Scholar]
- EUROSTAT. Generation of Waste by Waste Category; EUROSTAT: Luxembourg.
- Menegaki, M.; Damigos, D. A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 2018, 13, 8–15. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.; Tam, V.W. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. J. Clean. Prod. 2020, 121265. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Duan, H.; Zillante, G.; Zuo, J.; Yuan, H. Combining life cycle assessment and Building Information Modelling to account for carbon emission of building demolition waste: A case study. J. Clean. Prod. 2018, 172, 3154–3166. [Google Scholar] [CrossRef]
- Mercante, I.T.; Bovea, M.D.; Ibáñez-Forés, V.; Arena, A.P. Life cycle assessment of construction and demolition waste management systems: A Spanish case study. Int. J. Life. Cycle. Assess. 2012, 17, 232–241. [Google Scholar] [CrossRef]
- Marzouk, M.; Azab, S. Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resour. Conserv. Recy. 2014, 82, 41–49. [Google Scholar] [CrossRef]
- Brazil. Lei No. 12.305—Política Nacional de Resíduos Sólidos, Brasília: Official Journal Publication of the Federative Republic of Brazil, Subchefia para Assuntos Jurídicos: Brasília, Brazil, 2010. (In Portuguese)
- CONAMA. Diretrizes, Critérios E Procedimentos Para a Gestão Dos Resíduos Da Construção Civil; CONAMA: Brasília, Brazil, 2002. [Google Scholar]
- IBGE (Brazilian Intitute of Geography and Statistics). Relatório De Insumos E Composições—Outubro De 2020—Não Desonerado—Acre; IBGE: Brasília, Brazil, 2020. (In Portuguese) [Google Scholar]
- IBGE (Brazilian Intitute of Geography and Statistics). Sistema Nacional De Pesquisa De Custo E Índices Da Construção; IBGE: Brasília, Brazil.
- ABNT NBR 7211: Agregados Para Concreto—Especificao; ABNT: Rio de Janeiro, Brazil, 2019; pp. 1–11. (In Portuguese)
- Santos, D.P. Estudo Sobre A Utilização De Cinza Da Casca Da Castanha Do Brasil Como Adições Em Traços De Concreto; Federal University of Acre: Rio Branco, Brazil, 2015. [Google Scholar]
- Pedra Norte about the Company. Available online: http://gpedra.com.br/gpedra/sobre/ (accessed on 22 November 2020).
- Samadi, M.; Huseien, G.F.; Mohammadhosseini, H.; Lee, H.S.; Abdul Shukor Lim, N.H.; Tahir, M.M.; Alyousef, R. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. J. Clean. Prod. 2020, 266, 121825. [Google Scholar] [CrossRef]
- Ginga, C.P.; Ongpeng, J.M.C.; Daly, M.K.M. Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production. Materials 2020, 13, 2970. [Google Scholar] [CrossRef]
- Zordan, S.E. A Utilização Do Entulho Como Agregado Na Confecção Do Concreto; State University of Campinas: São Paulo, Brazil, 1997. [Google Scholar]
- Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; de Brito, J. Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 2013, 40, 679–690. [Google Scholar] [CrossRef]
- RC-Beton Weighing House of Schief Entsorgungs GmbH & Co.KG. Available online: http://www.rc-beton.de/index-pilotprojekte.html (accessed on 7 December 2020).
- Ho, N.Y.; Lee, Y.P.K.; Lim, W.F.; Chew, K.C.; Low, G.L.; Ting, S.K. Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Mag. Concr. Res. 2015, 67, 633–644. [Google Scholar] [CrossRef]
- Poon, C.-S.; Qiao, X.C.; Chan, D. The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base. Waste Manag. 2006, 26, 1166–1172. [Google Scholar] [CrossRef]
- Vieira, G.L.; Molin, D.C.C.D. Viabilidade técnica da utilização de concretos com agregados reciclados de resíduos de construção e demolição. Rev. IGAPÓ 2004, 4, 47–63. [Google Scholar]
- Chen, H.-J.; Yen, T.; Chen, K.-H. Use of building rubbles as recycled aggregates. Cem. Concr. Res. 2003, 33, 125–132. [Google Scholar] [CrossRef]
- Gómez-Soberón, J.M. Porosity of recycled concrete with substitution of recycled concrete aggregate. Cem. Concr. Res. 2002, 32, 1301–1311. [Google Scholar] [CrossRef] [Green Version]
- Leite, M.B. Avaliação De Propriedades Mecânicas De Concretos Produzidos Com Agregados Reciclados De Resíduos De Construção E Demolição; Federal University of Rio Grande do Sul: Porto Alegre, Brazil, 2001. [Google Scholar]
- Poon, C.-S.; Chan, D. The use of recycled aggregate in concrete in Hong Kong. Resour. Conserv. Recycl. 2007, 50, 293–305. [Google Scholar] [CrossRef]
- ABNT. NBR 15116: Recycled Aggregate of Solid Residue of Building Construtions—Requeriments and Methodologies; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- IBGE (Brazilian Intitute of Geography and Statistics). População residente para os municípios e para as unidades da federação; IBGE: Brasília, Brazil.
- CREA-AC (Regional Council of Engineering, A. and A.). Relatório das obras executadas em Rio Branco (AC); CREA-AC: Rio Branco, Brazil, 2018. [Google Scholar]
- ABNT. NBR 15113: Construction and Demolition Wastes—Landfills—Lines of Direction for Project, Implantation and Operation; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- ABNT. NBR 10007: Sampling of Solid Waste; Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2004. [Google Scholar]
- ABNT. NBR NM 248: Aggregates—Sieve Analysis of Fine and Coarse Aggregates; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- ABNT. NBR NM 52: Fine Aggregates—Determination of the Bulk Specific Gravity and Apparent Specific Gravity; Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- ABNT. NBR NM 53: Coarse aggregate—Determination of the Bulk Specific Gravity, Apparent Specific Gravity and Water Absorption; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- ABNT. NBR NM 45: Aggregates—Determination of the Unit Weight and Air-Void Content; Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2006. [Google Scholar]
- ABNT. NBR 9939: Coarse Aggregate—Determination of Total Moisture Content—Test Method; Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- ABNT. NBR NM 30: Fine Aggregate—Test Method for Water Absorption; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- ABNT. NBR NM 46: Aggregates—Determination of Material Finer Than 75 um Sieve by Washing; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- ABNT. NBR NM 49: Fine Aggregate—Determination of the Organic Impurities; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- ABNT. NBR 13276: Mortars Applied on Walls and Ceilings—Determination of the Consistency Index; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- ABNT. NBR 13278: Mortars Applied on Walls and Ceilings—Determination of the Specific Gravity and the Air Entrained Content in the Fresh Stage; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- ABNT. NBR 13277: Mortars Applied on Walls and Ceilings—Determination of the Water Retentivity; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- RECICLOS. Determination of the Initial Adhesion of Mortars; Research group on solid residues—RECICLOS: Ouro Preto, Brazil, 2020. [Google Scholar]
- ABNT. NBR 13279: Mortars Applied on Walls and Ceilings—Determination of the Flexural and the Compressive Strength in the Hardened Stage; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- ABNT. NBR 9778: Hardened mortar and Concrete—Determination of Absorption. Voids and Specific Gravity; Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- ABNT. NBR 9779: Mortar and Hardened Concrete—Determination of Water Absorption by Capillarity; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- ABNT. NBR 12655: Portland Cement Concrete—Preparation, Control, Receipt And Acceptance—Procedure; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- ABNT. NBR NM 67: Concrete—Slump Test for Determination of the Consistency; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 1998. [Google Scholar]
- ABNT. NBR 9833: Fresh Concrete—Determination of the Unit Weight, Yield and Air Content by the Gravimetric Test Method; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- ABNT. NBR 5738: Concrete—Procedure for Molding and Curing Concrete Test Specimens; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- ABNT. NBR 5739: Concrete—Compression Test of Cylindrical Specimens; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- ABNT. NBR 7222: Concrete and Mortar—Determination of the Tension Strength by Diametrical Compression of Cylindrical Test Specimens; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- ABNT. NBR 8802: Hardened Concrete—Determination of Ultrasonic Wave Transmission Velocity; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- NORDTEST. NT Build 443: Concrete Hardened—Accelerated Chloride Penetration; NORDTEST: Espoo, Brazil, 1995. [Google Scholar]
- Rodrigues, P.P. Parâmetros De Dosagem Racional Do Concreto; Brazilian Association of Portland Cement—ABCP: São Paulo, Brazil, 1983. [Google Scholar]
- de Sá Rodrigues, Clarissa Ribeiro; Fucale, S. Dosagem de concretos produzidos com agregado miúdo reciclado de resíduo da construção civil. Ambient. Construído 2014, 14, 99–111. [Google Scholar] [CrossRef]
- Seara-Paz, S.; González-Fonteboa, B.; Eiras-López, J.; Herrador, M.F. Bond behavior between steel reinforcement and recycled concrete. Mater. Struct. 2014, 47, 323–334. [Google Scholar] [CrossRef]
- González-Fonteboa, B.; Martínez-Abella, F.; Herrador, M.F.; Seara-Paz, S. Structural recycled concrete: Behaviour under low loading rate. Constr. Build. Mater. 2012, 28, 111–116. [Google Scholar] [CrossRef]
- Lovato, P.S.; Possan, E.; Molin, D.C.C.D.; Masuero, Â.B.; Ribeiro, J.L.D. Modeling of mechanical properties and durability of recycled aggregate concretes. Constr. Build. Mater. 2012, 26, 437–447. [Google Scholar] [CrossRef]
- Agrela, F.; Sánchez de Juan, M.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 2011, 25, 3950–3955. [Google Scholar] [CrossRef] [Green Version]
- Zaharieva, R.; Buyle-Bodin, F.; Skoczylas, F.; Wirquin, E. Assessment of the surface permeation properties of recycled aggregate concrete. Cem. Concr. Compos. 2003, 25, 223–232. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Use of recycled aggregates arising from construction and demolition waste in new construction applications. J. Clean. Prod. 2019, 236, 117629. [Google Scholar] [CrossRef]
- De Brito, J.; Silva, R. Current status on the use of recycled aggregates in concrete: Where do we go from here? RILEM Tech. Lett. 2016, 1, 1. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Constr. Build. Mater. 2017, 154, 294–309. [Google Scholar] [CrossRef]
- Wong, C.L.; Mo, K.H.; Yap, S.P.; Alengaram, U.J.; Ling, T.-C. Potential use of brick waste as alternate concrete-making materials: A review. J. Clean. Prod. 2018, 195, 226–239. [Google Scholar] [CrossRef]
- Zheng, C.; Lou, C.; Du, G.; Li, X.; Liu, Z.; Li, L. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results Phys. 2018, 9, 1317–1322. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, J.; Chen, F.; Liu, C.; Chen, X. Utilization of waste clay bricks as coarse and fine aggregates for the preparation of lightweight aggregate concrete. J. Clean. Prod. 2018, 201, 706–715. [Google Scholar] [CrossRef]
- de Haddad, L.D.O.; Neves, R.R.; de Oliveira, P.V.; dos Santos, W.J.; de Carvalho Junior, A.N.; dos Santos, W.J. Influence of particle shape and size distribution on coating mortar properties. J. Mater. Res. Technol. 2020, 9, 9299–9314. [Google Scholar] [CrossRef]
- Liu, L.; Shen, D.; Chen, H.; Xu, W. Aggregate shape effect on the diffusivity of mortar: A 3D numerical investigation by random packing models of ellipsoidal particles and of convex polyhedral particles. Comput. Struct. 2014, 144, 40–51. [Google Scholar] [CrossRef]
- Li, L.G.; Kwan, A.K.H. Mortar design based on water film thickness. Constr. Build. Mater. 2011, 25, 2381–2390. [Google Scholar] [CrossRef]
- Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 2016, 118, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Lye, C.-Q.; Dhir, R.K.; Ghataora, G.S. Shrinkage of recycled aggregate concrete. Proc. Inst. Civ. Eng. Struct. Build. 2016, 169, 867–891. [Google Scholar] [CrossRef]
- Vegas, I.; Azkarate, I.; Juarrero, A.; Frías, M. Diseño y prestaciones de morteros de albañilería elaborados con áridos reciclados procedentes de escombro de hormigón. Mater. Construcción 2009, 59, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- Salles, P.V.; Batista, R.P.; Gomes, C.L.; Morais, I.B.; Soares, M.M.; Poggiali, F.S.J. Influence of contents of addition of aggregates waste recycling construction and demolition in compressive strength of plain adhesive mortar. In Proceedings of the Anais do 59 Congresso Brasileiro do Concreto; IBRACON: São Paulo, Brazil, 2017. [Google Scholar]
- Tosi, N.C.; Chiella, A.F.; Chiella, V.F.; Niemczewski, J.A.L. Technical viability analysis of the use of ceramic waste from civil construction as a fine aggregate for the production of masonry mortars. In Proceedings of the Anais do 59 Congresso Brasileiro do Concreto2; IBRACON: São Paulo, Brazil, 2017. [Google Scholar]
- Mazzochini, M.J.; Niemczewski, J.A.L.S. Evaluation of the properties of mortars with recycled aggregates. In Proceedings of the Anais do 59 Congresso Brasileiro do Concreto; IBRACON: São Paulo, Brazil, 2017. [Google Scholar]
- Ledesma, E.F.; Torres Gómez, A.I.; López, M.; Ayuso, J.; Jiménez, J.R. Effect of powdered mixed recycled aggregates on bedding mortar properties. Eur. J. Environ. Civ. Eng. 2016, 20, s1–s17. [Google Scholar] [CrossRef]
- Oliveira, M.E.D.D.; Cabral, A.E.B. Argamassas de revestimento produzidas com agregados reciclados de Fortaleza-CE, Brasil. Eng. Civ. 2011, 41, 21–34. [Google Scholar]
- Carasek, H. Materiais de Construção Civil e Princípios de Ciência e Engenharia de Materiais, 2nd ed.; IBRACON: São Paulo, Brazil, 2010. [Google Scholar]
- Carasek, H.; Girardi, A.C.C.; Araújo, R.C.; Angelim, R.; Cascudo, O. Estudo e avaliação de agregados reciclados de resíduo de construção e demolição para argamassas de assentamento e de revestimento. Cerâmica 2018, 64, 288–300. [Google Scholar] [CrossRef] [Green Version]
- ASTM. ASTM C270: Standard Specification for Mortar for Unit Masonry; ASTM International: West Conshohocken, Brazil, 2019. [Google Scholar]
- ABNT. NBR 13281: Mortars applied on walls and ceilings—Requirements; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Arm, M. Self-cementing properties of crushed demolished concrete in unbound layers: Results from triaxial tests and field tests. Waste Manag. 2001, 21, 235–239. [Google Scholar] [CrossRef]
- Artuso, F.; Lukiantchuki, J.A. Evaluation of the self-cemeting effect of Construction and Demotion Waste (CDW) on mechanical performance over time for pavement support layers purpose. Ambient. Construído 2019, 19, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Ledesma, E.F.; Jiménez, J.R.; Fernández, J.M.; Galvín, A.P.; Agrela, F.; Barbudo, A. Properties of masonry mortars manufactured with fine recycled concrete aggregates. Constr. Build. Mater. 2014, 71, 289–298. [Google Scholar] [CrossRef]
- Shui, Z.; Xuan, D.; Wan, H.; Cao, B. Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment. Constr. Build. Mater. 2008, 22, 1723–1729. [Google Scholar] [CrossRef]
- Levy, S.M. Contribuição Ao Estudo Da Durabilidade De Concretos Produzidos Com Resíduos De Concreto E Alvenaria; Universidade de São Paulo: São Paulo, Brazil, 2001. [Google Scholar]
- Kruger, P.; Pereira, E.; Chinelatto, A. Influência do agregado reciclado na durabilidade do concreto: Uma revisão da bibliografia. Rev. Tec. Do CREA-PR 2017, 2, 253–265. [Google Scholar]
- Corinaldesi, V. Mechanical behavior of masonry assemblages manufactured with recycled-aggregate mortars. Cem. Concr. Compos. 2009, 31, 505–510. [Google Scholar] [CrossRef]
- Gomes, P.C.C.; de Alencar, T.F.F.; da Silva, N.V.; de Memo Moraes, K.A.; Angulo, S.C. Obtenção de concreto leve utilizando agregados reciclados. Ambient. Construído 2015, 15, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. Mechanical properties of concrete produced with recycled coarse aggregates—Influence of the use of superplasticizers. Constr. Build. Mater. 2013, 44, 101–109. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef]
- ABNT. NBR 8953: Concrete for Structural Use—Density, Strength and Consistency Classification; Brazilian Association of Technical Standards—ABNT: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Vázquez, E.; Alaejos, P.; Sanchez, M.; Aleza, F.; Barra, M.; Buron, M. Use of Recycled Aggregate for the Production of Structural Concrete; Commission 2, Working Group 2/5 Recycled concrete, Monograph M-11 ACHE: Madrid, Spain, 2006. (In Spanish) [Google Scholar]
- Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Ferreira, L.; de Brito, J.; Barra, M. Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag. Concr. Res. 2011, 63, 617–627. [Google Scholar] [CrossRef]
- Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 2000, 33, 574–580. [Google Scholar] [CrossRef]
- BSI EN 125045-4: Testing Concrete. Determination of Ultrasonic Pulse Velocity; British standard Institute—BSI: London, UK, 2004. [Google Scholar]
- Komloš, K.; Popovics, S.; Nürnbergerová, T.; Babál, B.; Popovics, J.S. Ultrasonic pulse velocity test of concrete properties as specified in various standards. Cem. Concr. Compos. 1996, 18, 357–364. [Google Scholar] [CrossRef]
- Kou, S.-C.; Poon, C.-S.; Wan, H.-W. Properties of concrete prepared with low-grade recycled aggregates. Constr. Build. Mater. 2012, 36, 881–889. [Google Scholar] [CrossRef]
- Lafhaj, Z.; Goueygou, M.; Djerbi, A.; Kaczmarek, M. Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem. Concr. Res. 2006, 36, 625–633. [Google Scholar] [CrossRef]
- Punurai, W.; Jarzynski, J.; Qu, J.; Kim, J.-Y.; Jacobs, L.J.; Kurtis, K.E. Characterization of multi-scale porosity in cement paste by advanced ultrasonic techniques. Cem. Concr. Res. 2007, 37, 38–46. [Google Scholar] [CrossRef]
- Villagrán-Zaccardi, Y.A.; Zega, C.J.; Di Maio, Á.A. Chloride Penetration and Binding in Recycled Concrete. J. Mater. Civ. Eng. 2008, 20, 449–455. [Google Scholar] [CrossRef]
- Olorunsogo, F.; Padayachee, N. Performance of recycled aggregate concrete monitored by durability indexes. Cem. Concr. Res. 2002, 32, 179–185. [Google Scholar] [CrossRef]
- Rio Branco City Hall. Plano Municipal De Gestão Integrada De Resíduos Sólidos De Rio Branco; Rio Branco City Hall: Rio Branco, Brazil, 2015. [Google Scholar]
- Acre Minha Casa Minha Vida Beneficiará No Acre Famílias Com Renda De Até 3 Salários Mínimos. Available online: https://agencia.ac.gov.br/minha-casa-minha-vida-beneficiar-no-acre-famlias-com-renda-de-at-3-salrios-mnimos/ (accessed on 10 February 2021).
- Brazil. Relatório Social Final da Cidade do Povo—Diagnóstico social da Cidade, Rio Branco; Tropical Parquet: Rio Branco, Brazil, 2017. [Google Scholar]
- Acre Agora Prefeitura de Rio Branco Inicia obras e Pavimentação de Ramais no CINTURÃO Verde do município. Available online: https://acreagora.com/2020/05/08/prefeitura-de-rio-branco-inicia-obras-e-pavimentacao-de-ramais-no-cinturao-verde-do-municipio/ (accessed on 10 February 2021).
Sample ID * | Composition (Construction Stage) | ||
---|---|---|---|
Structures | Masonry | Finishing | |
S | 100% | - | - |
M | - | 100% | - |
F | - | - | 100% |
SF | 50% | - | 50% |
SM | 50% | 50% | - |
MF | - | 50% | 50% |
SMF | 33.3% | 33.3% | 33.3% |
SSMF | 50% | 25% | 25% |
SMMF | 25% | 50% | 25% |
SMFF | 25% | 25% | 50% |
Parameter 1 | Structure | Masonry | Finishing |
---|---|---|---|
CMD (mm) | 76.2 | 50.8 | 76.2 |
FM | 8.40 | 5.34 | 5.96 |
D50 (mm) | 76.2 | 9.50 | 9.50 |
D10 (mm) | 4.75 | 0.075 | 0.075 |
Cu | 32.3 | 169.3 | 338.7 |
Cc | 14.35 | 4.20 | 2.10 |
γ (g/cm³) | 2.60 | 2.51 | 2.44 |
ρ (g/cm³) | 1.12 | 1.17 | 0.94 |
w (%) | 10.13 | 10.31 | 7.98 |
ab (%) | 13.39 | 12.02 | 10.72 |
Parameter 1 | CMD (mm) | FM | γ (g/cm³) | ρ (g/cm³) | ab (%) | PM (%) |
---|---|---|---|---|---|---|
ARS | 0.6 | 1.35 | 2.51 | 1.41 | 1.46 | 1.77 |
SQS | 4.75 | 2.53 | 2.48 | 1.64 | 0.54 | 0.43 |
S-F | 4.75 | 2.53 | 2.39 | 1.27 | 12.51 | 7.30 |
M-F | 4.75 | 2.53 | 2.40 | 1.25 | 9.99 | 5.31 |
F-F | 4.75 | 2.53 | 2.30 | 1.22 | 12.43 | 5.98 |
AGA | 19 | 0.92 | 2.70 | 1.46 | 0.45 | - |
S-C | 19 | 0.92 | 2.61 | 0.98 | 16.86 | - |
M-C | 19 | 0.92 | 2.63 | 0.93 | 17.58 | - |
F-C | 19 | 0.92 | 2.53 | 1.10 | 8.25 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, F.d.S.; Carvalho, J.M.F.d.; Silveira, G.G.; Araújo, V.C.; Peixoto, R.A.F. Application of Construction and Demolition Waste in Civil Construction in the Brazilian Amazon—Case Study of the City of Rio Branco. Materials 2021, 14, 2247. https://doi.org/10.3390/ma14092247
Souza FdS, Carvalho JMFd, Silveira GG, Araújo VC, Peixoto RAF. Application of Construction and Demolition Waste in Civil Construction in the Brazilian Amazon—Case Study of the City of Rio Branco. Materials. 2021; 14(9):2247. https://doi.org/10.3390/ma14092247
Chicago/Turabian StyleSouza, Fernando da Silva, José Maria Franco de Carvalho, Gabriela Grotti Silveira, Vitória Cordeiro Araújo, and Ricardo André Fiorotti Peixoto. 2021. "Application of Construction and Demolition Waste in Civil Construction in the Brazilian Amazon—Case Study of the City of Rio Branco" Materials 14, no. 9: 2247. https://doi.org/10.3390/ma14092247
APA StyleSouza, F. d. S., Carvalho, J. M. F. d., Silveira, G. G., Araújo, V. C., & Peixoto, R. A. F. (2021). Application of Construction and Demolition Waste in Civil Construction in the Brazilian Amazon—Case Study of the City of Rio Branco. Materials, 14(9), 2247. https://doi.org/10.3390/ma14092247