Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of the Scaffold-Type Structures (P3, P4)
2.3. SEM–EDAX Analysis
2.4. Artificial Saliva
2.5. X-ray Fluorescence (XRF) Analysis
2.6. In Vitro Experimental Setup
2.7. Cell Line and Cell Culture Conditions
2.8. Cell Viability Assay by Means of Alamar Blue Test
- εox = molar extinction coefficient of the oxidized form of Alamar blue reagent;
- Atest = absorbance of test wells;
- A0 = absorbance of control well;
- λ1 = 570 nm;
- λ2 = 600 nm.
2.9. HET–CAM Method
2.10. Statistical Analysis
3. Results
3.1. SEM–EDAX Analysis
3.2. Analysis of the Content of Trace Metals in Ceramic Samples
3.3. Cell Viability Assessment
3.4. Irritation Potential Assessment by the Means of HET–CAM Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babu, P.J.; Alla, R.K.; Alluri, V.R.; Datla, S.R.; Konakanchi, A. Dental Ceramics: Part I-an overview of composition, structure and properties. Am. J. Mater. Eng. Technol. 2015, 3, 13–18. [Google Scholar]
- Trajkovski, B.; Jaunich, M.; Müller, W.-D.; Beuer, F.; Zafiropoulos, G.-G.; Houshmand, A. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes. Materials 2018, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baino, F.; Novajro, G.; Vitale-Brovarone, C. Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering. Front. Bioeng. Biotechnol. 2015, 3, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, S.; Macchiarelli, G.; Bianchi, S. Autologous Materials in Regenerative Dentistry: Harvested Bone, Platelet Concentrates and Dentin Derivates. Molecules 2020, 25, 5330. [Google Scholar] [CrossRef]
- Pizzicannella, J.; Pierdomenico, S.D.; Piattelli, A.; Varvara, G.; Fonticoli, L.; Trubiani, O.; Diomede, F. 3D Human Periodontal Stem Cells and Endothelial Cells Promote Bone Development in Bovine Pericardium-Based Tissue Biomaterial. Materials 2019, 12, 2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollington, S.; van Noort, R. An Update of Ceramics in Dentistry. Int. J. Clin. Dent. 2009, 2, 283–307. [Google Scholar]
- Ho, G.W.; Matinlinna, J.P. Insights on Ceramics as Dental Materials. Part I: Ceramic Material Types in Dentistry. Silicon 2011, 3, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kumar, V.; Kumar, R.; Kumar, R.; Pruncu, C.I. Fabrication and characterization of ZrO2 incorporated SiO2–CaO–P2O5 bioactive glass scaffolds. J. Mech. Behav. Biomed. Mater. 2020, 109, 103854. [Google Scholar] [CrossRef]
- Schitea, R.-I.; Nitu, A.; Ciobota, A.-A.; Munteanu, A.-L.; David, I.-M.; Miu, D.; Raileanu, M.; Bacalum, M.; Busuioc, C. Pulsed Laser Deposition Derived Bioactive Glass-Ceramic Coatings for Enhancing the Biocompatibility of Scaffolding Materials. Materials 2020, 13, 2615. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Egusa, H. Current bone substitutes for implant dentistry. J. Prosthodont. Res. 2017, 62, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Saima, S.; Jan, S.M.; Shah, A.F.; Yousuf, A.; Batra, M. Bone grafts and bone substitutes in dentistry. J. Oral Res. Rev. 2016, 8, 36–38. [Google Scholar]
- Gabor, A.; Hosszu, T.; Zaharia, C.; Kozma, A.; Cojocariu, A.C.; Negrutiu, M.L.; Szuhanek, C.; Sinescu, C. 3D Printing of a Mandibular Bone Deffect. Mater. Plast. 2017, 54, 29–31. [Google Scholar] [CrossRef]
- Gabor, A.; Zaharia, C.; Todericiu, V.; Szuhanek, C.; Cojocariu, A.C.; Duma, V.F.; Sticlaru, C.; Negrutiu, M.L.; Antoniac, I.V.; Sinescu, C. Adhesion of Scaffolds with Implants to the Mandibular Bone with a Defect. Mater. Plast. 2018, 55, 393–397. [Google Scholar] [CrossRef]
- Pina, S.; Ribeiro, V.P.; Marques, C.F.; Maia, F.R.; Silva, T.H.; Reis, R.L.; Oliveira, J.M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials 2019, 12, 1824. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Deng, Y.; Feng, P.; Mao, Z.; Li, P.; Yang, B.; Deng, J.; Cao, Y.; Shuai, C.; Peng, S. Current Progress in Bioactive Ceramic Scaffolds for Bone Repair and Regeneration. Int. J. Mol. Sci. 2014, 15, 4714–4732. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Alvarez, M.; Rodriguez-Valencia, C.; Serra, J.; Gonzales, P. Bio-inspired ceramics: Promising scaffolds for bone tissue engineering. Procedia Eng. 2013, 59, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Sabree, I.; Gough, J.E.; Derby, B. Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions. Ceram. Int. 2015, 41, 8425–8432. [Google Scholar] [CrossRef]
- Ghassemi, T.; Shahroodi, A.; Ebrahimzadeh, M.H.; Mousavian, A.; Movaffagh, J.; Moradi, A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018, 6, 90–99. [Google Scholar]
- Vitale-Brovarone, C.; Verne, E.; Robiglio, L.; Martinasso, G.; Canuto, R.A.; Muzio, G. Biocompatible glass–ceramic materials for bone substitution. J. Mater. Sci. Mater. Med. 2008, 19, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, G.B.; Crespi, R.; Capparè, P.; Bravi, F.; Bruschi, E.; Gherlone, E. Localized Management of Sinus Floor Technique for Implant Placement in Fresh Molar Sockets. Clin. Implant. Dent. Relat. Res. 2013, 15, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Degidi, M.; Iezzi, G.; Pecora, G.; Piattelli, M.; Orsini, G.; Caputi, S.; Perrotti, V.; Mangano, C.; Piattelli, A. Maxillary Sinus Augmentation with Different Biomaterials: A Comparative Histologic and Histomorphometric Study in Man. Implant. Dent. 2006, 15, 197–207. [Google Scholar] [CrossRef]
- Ferrini, F.; Capparé, P.; Vinci, R.; Gherlone, E.F.; Sannino, G. Digital versus Traditional Workflow for Posterior Maxillary Rehabilitations Supported by One Straight and One Tilted Implant: A 3-Year Prospective Comparative Study. BioMed Res. Int. 2018, 4149107. [Google Scholar] [CrossRef]
- Gherlone, E.F.; Ferrini, F.; Crespi, R.; Gastaldi, G.; Capparé, P. Digital Impressions for Fabrication of Definitive “All-on-Four” Restorations. Implant. Dent. 2015, 24, 125–129. [Google Scholar] [CrossRef]
- Cattoni, F.; Chirico, L.; Merlone, A.; Manacorda, M.; Vinci, R.; Gherlone, E.F. Digital Smile Designed Computer-Aided Surgery versus Traditional Workflow in “All on Four” Rehabilitations: A Randomized Clinical Trial with 4-Years Follow-Up. Int. J. Environ. Res. Public Health 2021, 18, 3449. [Google Scholar] [CrossRef] [PubMed]
- Szuhanek, C.A.; Watz, C.G.; Avram, Ș.; Moacă, E.-A.; Mihali, C.V.; Popa, A.; Campan, A.A.; Nicolov, M.; Dehelean, C.A. Comparative Toxicological In Vitro and In Ovo Screening of Different Orthodontic Implants Currently Used in Dentistry. Materials 2020, 13, 5690. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Patwari, M.; Liu, D. Cytotoxicity of orthodontic temporary anchorage devices on human periodontal ligament fibroblasts in vitro. Clin. Exp. Dent. Res. 2019, 5, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, C.C.; Grenho, L.; Gomes, P.S.; Quadros, P.A.; Fernandes, M.H. Nano-hydroxyapatite in oral care cosmetics: Characterization and cytotoxicity assessment. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.Z.; Thompson, I.D.; Boccaccini, A.R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 2006, 27, 2414–2425. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.B.B.; Segurado, M.N.; Dorta, M.C.L.; Dias, F.R.; Lenza, M.G.; Lenza, M.A. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants. Dent. Press J. Orthod. 2016, 21, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, I.; Alwahab, Z.N. An Evaluation of the Effect of Artificial Saliva with Different pH on Shear Bond Strength of Veneering Ceramic to Metal and Zirconia Substructure (In Vitro Study). WJPR 2017, 6, 30–44. [Google Scholar]
- Arai, T. Introduction. In Handbook of Practical X-ray Fluorescence Analysis; Beckhoff, B., Kanngieber, B., Langhoff, N., Wedell, R., Wolff, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–31. [Google Scholar]
- Oladebeye, A.O. Assessment of Heavy Metals in Nigerian Vegetables and Soils in Owo and Edo Axes Using X-Ray Fluorescence (Xrf) Technique; BSc. Project; Achievers University: Owo, Nigeria, 2017. [Google Scholar]
- West, M.; Ellis, A.T.; Potts, P.J.; Streli, C.; Vanhoof, C.; Wegrzynek, D.; Wobrauschek, P. Atomic spectrometry update-X-Ray fluorescence spectrometry. J. Anal. Atomic Spectrom. 2010, 25, 1503–1545. [Google Scholar] [CrossRef]
- Thrivikraman, G.; Madras, G.; Basu, B. In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv. 2014, 4, 12763. [Google Scholar] [CrossRef] [Green Version]
- Moacă, E.-A.; Farcaș, C.; Coricovac, D.; Avram, S.; Mihali, C.-V.; Drăghici, G.-A.; Loghin, F.; Păcurariu, C.; Dehelean, C. Oleic Acid Double Coated Fe3O4 Nanoparticles as Anti-Melanoma Compounds with a Complex Mechanism of Activity—In Vitro and In Ovo Assessment. J. Biomed. Nanotechnol. 2019, 15, 1–17. [Google Scholar] [CrossRef]
- Moacă, E.-A.; Farcaș, C.; Ghițu, A.; Coricovac, D.; Popovici, R.; Cărăbă-Meiță, N.-L.; Ardelean, F.; Antal, D.S.; Dehelean, C.; Avram, Ș. A Comparative Study of Melissa officinalis Leaves and Stems Ethanolic Extracts in terms of Antioxidant, Cytotoxic, and Antiproliferative Potential. Evid. Based Complement. Alternat. Med. 2018, 7860456. [Google Scholar] [CrossRef] [Green Version]
- Maghiari, A.L.; Coricovac, D.; Pinzaru, I.A.; Macașoi, I.G.; Marcovici, I.; Simu, S.; Navolan, D.; Dehelean, C. High Concentrations of Aspartame Induce Pro-Angiogenic Effects in Ovo and Cytotoxic Effects in HT-29 Human Colorectal Carcinoma Cells. Nutrients 2020, 12, 3600. [Google Scholar] [CrossRef]
- Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). ICCVAM-Recommended Test Method Protocol: Hen’s Egg Test—Chorioallantoic Membrane (HET-CAM) Test Method. ICCVAM Test. Method Eval. Rep. 2010, 13, B30–B38. [Google Scholar]
- Popa, A.; Dehelean, C.; Calniceanu, H.; Watz, C.; Brad, S.; Sinescu, C.; Marcu, O.A.; Popa, C.S.; Avram, S.; Nicolov, M.; et al. A Custom-Made Orthodontic Mini-Implant—Effect of Insertion Angle and Cortical Bone Thickness on Stress Distribution with a Complex In Vitro and In Vivo Biosafety Profile. Materials 2020, 13, 4789. [Google Scholar] [CrossRef] [PubMed]
- Luepke, N.P. Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol. 1985, 23, 287–291. [Google Scholar] [CrossRef]
- Navalón, C.; Ros-Tárraga, P.; Murciano, A.; Velasquez, P.; Mazón, P.; De Aza, P.N. Easy manufacturing of 3D ceramic scaffolds by the foam replica technique combined with sol-gel or ceramic slurry. Ceram. Int. 2019, 45, 18338–18346. [Google Scholar] [CrossRef]
- Theocharidou, A.; Tsioptsias, C.; Konstantinidou, K.; Kontonasaki, E.; Sivropoulou, A.; Panayotou, C.; Paraskevopoulos, K.M.; Koidis, P. Human PDL Fibroblasts Proliferation in Scaffolds on Bioactive Glass Modified Ceramics. Bioceram. Dev. Appl. 2011, 1, D110116. [Google Scholar] [CrossRef]
- Gherlone, E.F.; Capparé, P.; Tecco, S.; Polizzi, E.; Pantaleo, G.; Gastaldi, G.; Grusovin, M.G. A Prospective Longitudinal Study on Implant Prosthetic Rehabilitation in Controlled HIV-Positive Patients with 1-Year Follow-Up: The Role of CD4+ Level, Smoking Habits, and Oral Hygiene. Clin. Implant. Dent. Relat. Res. 2016, 18, 955–964. [Google Scholar] [CrossRef]
- Bretcanu, O.; Samaille, C.; Boccaccini, A.R. Simple methods to fabricate Bioglass®-derived glass–ceramic scaffolds exhibiting porosity gradient. J. Mater. Sci. 2008, 43, 4127–4134. [Google Scholar] [CrossRef]
- Barbeck, M.; Unger, R.; Witte, F.; Wenisch, S.; Schnettler, R. Xenogeneic bone grafting materials. Int. Mag. Oral Implant. 2017, 2, 34–36. [Google Scholar]
- Montazerian, M.; Zanotto, E.D. Chapter 2—Bioactive Glass-ceramics: Processing, Properties and Applications. In Bioactive Glasses: Fundamentals, Technology and Applications; Boccaccini, A.R., Brauer, D.S., Hupa, L., Eds.; Thomas Graham House: Cambridge, UK, 2017; pp. 27–53. [Google Scholar]
- ISO 22442-1:2020. Medical Devices Utilizing Animal Tissues and Their Derivatives—Part 1: Application of Risk Management. Available online: https://www.iso.org/standard/74280.html (accessed on 15 March 2021).
- ISO 22442-2:2020. Medical Devices Utilizing Animal Tissues and Their Derivatives—Part 2: Controls on Sourcing, Collection and Handling. Available online: https://www.iso.org/standard/74281.html (accessed on 15 March 2021).
- ISO 22442-3:2007. Reviewed and Confirmed in 2015, Medical Devices Utilizing Animal Tissues and Their Derivatives—Part 3: Validation of the Elimination and/or Inactivation of Viruses and Transmissible Spongiform Encephalopathy (TSE) Agents. Available online: https://www.iso.org/standard/39351.html (accessed on 15 March 2021).
- Lee, H.J.; Yi, G.S.; Lee, J.W.; Kim, D.J. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J. Periodontal. Implant. Sci. 2017, 47, 388–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.L.; Piepergerdes, T.C.; Mikos, A.G. Chapter 6—Bone graft engineering: Composite scaffolds. In Dental Implants and Bone Grafts; Alghamdi, H., Jansen, J., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 159–181. ISBN 9780081024782. [Google Scholar]
- Woloszyk, A.; Buschmann, J.; Waschkies, C.; Stadlinger, B.; Mitsiadis, T.A. Human Dental Pulp Stem Cells andGingival Fibroblasts Seeded into Silk Fibroin Scaffolds Have the Same Ability in Attracting Vessels. Front. Physiol. 2016, 7, 140. [Google Scholar] [CrossRef]
- Kilic, K.; Kesim, B.; Sumer, Z.; Polat, Z.; Kesim, S. In vitro cytotoxicity of all-ceramic substructural materials after aging. J. Dent. Sci. 2013, 8, 231–238. [Google Scholar] [CrossRef] [Green Version]
- ISO 10993-5:2009. Reviewed and Confirmed in 2017, Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO Catalogue, Edition 3. Available online: https://www.iso.org/standard/36406.html (accessed on 27 February 2021).
- Lee, M.; Hwang, J.H.; Lim, K.M. Alternatives to in Vivo Draize Rabbit Eye and Skin Irritation Tests with a Focus on 3D Reconstructed Human Cornea-like Epithelium and Epidermis Models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, C.A.; Dario, M.F.; Sarruf, F.D.; Mariz, I.F.A.; Velasco, M.V.R.; Rosado, C.; Baby, A.R. Safety and Efficacy Evaluation of Gelatin-Based Nanoparticles Associated with UV Filters. Coll. Surf. B Biointerfaces 2016, 140, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, A.A.; Kıyan, H.T. Treatment of Oxidative Stress-Induced Pain and Inflammation with Dexketoprofen Trometamol Loaded Different Molecular Weight Chitosan Nanoparticles: Formulation, Characterization and Anti-Inflammatory Activity by Using in Vivo HET-CAM Assay. Microvasc. Res. 2020, 128, 103961. [Google Scholar] [CrossRef] [PubMed]
- Ardlin, B.I.; Dahl, J.E.; Tibballs, J.E. Static Immersion and Irritation Tests of Dental Metal-Ceramic Alloys. Eur. J. Oral Sci. 2005, 113, 83–89. [Google Scholar] [CrossRef]
Sample * | Large Pore (Mean ± SD) | Small Pore (Mean ± SD) |
---|---|---|
P1 | 8.302 ± 0.763 | 1.374 ± 0.267 |
P2 | 5.209 ± 0.724 | 1.334 ± 0.236 |
P3 | 6.138 ± 1.441 | 0.921 ± 0.238 |
P4 | 29.590 ± 3.563 | 2.309 ± 0.493 |
Sample | Element | Wt % | At % | K-Ratio | Z | A | F |
---|---|---|---|---|---|---|---|
C k | 17.38 | 28.45 | 0.0358 | 1.0404 | 0.1980 | 1.0005 | |
O k | 37.39 | 45.95 | 0.0474 | 1.0246 | 0.1273 | 1.0002 | |
Na k | 2.20 | 1.88 | 0.0047 | 0.9609 | 0.2199 | 1.0018 | |
P1 | Mg k | 1.45 | 1.17 | 0.0043 | 0.9857 | 0.3025 | 1.0033 |
P k | 14.79 | 9.39 | 0.0987 | 0.9536 | 0.6952 | 1.0071 | |
Ca k | 26.80 | 13.15 | 0.2386 | 0.9578 | 0.9296 | 1.0000 | |
Total | 100.00 | 100.00 | |||||
C k | 12.77 | 21.15 | 0.0262 | 1.0403 | 0.1972 | 1.0006 | |
O k | 43.57 | 54.15 | 0.0587 | 1.0244 | 0.1316 | 1.0002 | |
Na k | 1.38 | 1.19 | 0.0028 | 0.9608 | 0.2112 | 1.0018 | |
P2 | Mg k | 1.19 | 0.97 | 0.0035 | 0.9855 | 0.2961 | 1.0033 |
P k | 14.76 | 9.48 | 0.0977 | 0.9535 | 0.6896 | 1.0070 | |
Ca k | 26.32 | 13.06 | 0.2341 | 0.9577 | 0.9286 | 1.0000 | |
Total | 100.00 | 100.00 | |||||
C k | 21.71 | 35.36 | 0.0498 | 1.0395 | 0.2207 | 1.0005 | |
P3 | O k | 33.37 | 40.80 | 0.0378 | 1.0236 | 0.1107 | 1.0001 |
P k | 13.37 | 8.44 | 0.0937 | 0.9527 | 0.7288 | 1.0089 | |
Ca k | 31.55 | 15.40 | 0.2867 | 0.9571 | 0.9496 | 1.0000 | |
Total | 100.00 | 100.00 | |||||
C k | 8.64 | 13.81 | 0.0113 | 1.0367 | 0.1256 | 1.0005 | |
O k | 45.48 | 54.58 | 0.1118 | 1.0210 | 0.2407 | 1.0005 | |
Na k | 0.56 | 0.47 | 0.0015 | 0.9576 | 0.2725 | 1.0050 | |
P4 | Al k | 15.59 | 11.10 | 0.0808 | 0.9540 | 0.5375 | 1.0103 |
Si k | 28.36 | 19.39 | 0.1280 | 0.9824 | 0.4594 | 1.0002 | |
K k | 0.81 | 0.40 | 0.0057 | 0.9297 | 0.7537 | 1.0008 | |
Ca k | 0.56 | 0.27 | 0.0044 | 0.9533 | 0.8204 | 1.0000 | |
Total | 100.00 | 100.00 |
Ceramic Sample | Trace Metals Quantification | |||||
---|---|---|---|---|---|---|
P1 | Mg | Al | Si | P | Ca | V |
1.5698 | 0.0463 | 0.925 | 6.8278 | 48.8914 | 0.4923 | |
Cr | Mn | Fe | Co | Ni | Cu | |
0.0536 | 0.0146 | 0.079 | 0.0104 | 0.0084 | 0.0043 | |
Zn | Sr | Zr | Mo | Ag | Cd | |
0.0502 | 0.1075 | 0.002 | 0.0025 | 0.0122 | 0.0089 | |
Sn | Sb | Ba | Au | Hg | Pb | |
0.0216 | 0.0088 | 0.0837 | 0.0063 | 0.0016 | 0.0012 | |
Th | K | PD | ||||
0.0016 | 0 | 0 | ||||
P2 | Mg | Al | Si | P | Ca | V |
1.3591 | 0 | 0.8319 | 7.3158 | 48.4828 | 0.4583 | |
Cr | Mn | Fe | Co | Ni | Cu | |
0.0992 | 0.0368 | 0.0883 | 0 | 0 | 0 | |
Zn | Sr | Zr | Mo | Ag | Cd | |
0.0437 | 0.0954 | 0.0018 | 0.0023 | 0.0141 | 0.0086 | |
Sn | Sb | Ba | Au | Hg | Pb | |
0 | 0.0085 | 0.045 | 0.0073 | 0 | 0 | |
Th | K | PD | ||||
0.0017 | 0 | 0 | ||||
P3 | Mg | Al | Si | P | Ca | V |
0.2379 | 0 | 1.6962 | 6.9812 | 46.0344 | 1.939 | |
Cr | Mn | Fe | Co | Ni | Cu | |
0.1782 | 0.092 | 0.2095 | 0.0234 | 0.0203 | 0.0022 | |
Zn | Sr | Zr | Mo | Ag | Cd | |
0.0101 | 0.0381 | 0.0021 | 0.0061 | 0.0241 | 0.0327 | |
Sn | Sb | Ba | Au | Hg | Pb | |
0.0719 | 0.0566 | 0.141 | 0.0147 | 0.0024 | 0.0038 | |
Th | K | PD | ||||
0.0031 | 0.6141 | 0.5678 | ||||
P4 | Al | Sc | K | Ca | V | As |
2.710 | 0.0039 | 0.6522 | 0.34443 | 0.0007 | 0.0004 | |
Fe | Co | Zn | Rb | Sr | Zr | |
0.200 | 0.0001 | 0.0059 | 0.0055 | 0.0039 | 0.0048 | |
Ti | U | Ta | Pb | Th | ||
0.0348 | 0 | 0.002 | 0.003 | 0.0015 |
Test Compounds & Controls | Irritation Score | Classification of the Effect |
---|---|---|
Culture media (Negative control) | 0 | Nonirritant |
SLS 0.5% (Positive control) | 13.45 | Strong irritant |
P1 | 0 | Nonirritant |
P2 | 0.81 | Nonirritant |
P3 | 0 | Nonirritant |
P4 | 0 | Nonirritant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabricky, M.M.C.; Gabor, A.-G.; Milutinovici, R.A.; Watz, C.G.; Avram, Ș.; Drăghici, G.; Mihali, C.V.; Moacă, E.-A.; Dehelean, C.A.; Galuscan, A.; et al. Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. Materials 2021, 14, 2266. https://doi.org/10.3390/ma14092266
Fabricky MMC, Gabor A-G, Milutinovici RA, Watz CG, Avram Ș, Drăghici G, Mihali CV, Moacă E-A, Dehelean CA, Galuscan A, et al. Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. Materials. 2021; 14(9):2266. https://doi.org/10.3390/ma14092266
Chicago/Turabian StyleFabricky, Mihai M.C., Alin-Gabriel Gabor, Raluca Adriana Milutinovici, Claudia Geanina Watz, Ștefana Avram, George Drăghici, Ciprian V. Mihali, Elena-Alina Moacă, Cristina Adriana Dehelean, Atena Galuscan, and et al. 2021. "Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles" Materials 14, no. 9: 2266. https://doi.org/10.3390/ma14092266
APA StyleFabricky, M. M. C., Gabor, A.-G., Milutinovici, R. A., Watz, C. G., Avram, Ș., Drăghici, G., Mihali, C. V., Moacă, E.-A., Dehelean, C. A., Galuscan, A., Buzatu, R., Duma, V.-F., Negrutiu, M.-L., & Sinescu, C. (2021). Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. Materials, 14(9), 2266. https://doi.org/10.3390/ma14092266