Method of Mathematical Modeling for the Experimental Evaluation of Flame-Retardant Materials’ Parameters
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
- 1.
- Influencing factors (IFs) [x1, …, xm] and output parameters (OPs) [y1, …, yn];
- 2.
- Make a plan of active multifactorial tests in the form of matrix X, containing m columns (according to the number of IFs) and N rows (according to the number of tests), the main requirements for which are as follows:
- (a)
- Lack of correlation between IFs (pair correlation coefficient rxkl between factors xk and xl should be close to 0);
- (b)
- The completeness of the factor space coverage (which should be at least: N > m);
- (c)
- Practicability, i.e., compliance with the capabilities of the experimental bases;
- (d)
- All experiments (combinations of IFs) in matrix X are equivalent.
- 3.
- Run active tests during which IF combinations are varied according to the plan (matrix X) and determine (measure) the values of the IFs, thus forming matrix Y, containing N rows (according to the number of tests) and n columns (according to the number of OPs). In this case, the results must be unambiguous, i.e., when repeating an experiment (reproducing the same IF combination), the deviation of the OP values should be insignificant;
- 4.
- Carry out mathematical processing of the active test results, which involves the following:
- (a)
- Determining the relationship between the OPs by calculating the OP pair correlation coefficient (rykl values between parameters yk and yl must be close to 0, otherwise one of the OPs at yk or yl can be replaced by another OP);
- (b)
- Assessment of the correspondence of the sample of experimental values of each j-th OP [yj1, …, yjN] to normal (Gaussian) distribution, especially in accordance with the asymmetry coefficients As and kurtosis Ex (i.e., condition As = Ex = 0);
- (c)
- Building an adequate mathematical model:is the k-th conditional factor, which is a component of the matrix , and represents the IF function , and Mj is the number of regression coefficients or conditional factors ( < );
- (d)
- Using regression Equation (1) for applied purposes:
- Interpretation of the dependence of OPs on IFs;
- Evaluating the values of OPs for combinations of IFs that differ from those included in matrix X;
- Assessment of the significance of the influence of IFs on OPs;
- Construction of the working area on IF sets in which each j-th OP is within acceptable limits.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perez, L.; Autrique, L.; Pechoux, F. Modelling and experimental testing of intumescent coatings under high thermal flux for military applications. In Proceedings of the 11th International Symposium on Fire Safety Science, Canterbury, New Zealand, 10–14 February 2014. [Google Scholar]
- Roberts, T.; Shirvill, L.; Waterton, W.; Buckland, I. Fire resistance of passive fire protection coatings after long-term weathering. Process. Saf. Environ. Prot. 2010, 88, 1–19. [Google Scholar] [CrossRef]
- Eremina, T.Y.; Korolchenko, D.A.K. Fire Protection of Building Constructions with the Use of Fire-Retardant Intumescent Compositions. Buildings 2020, 10, 185. [Google Scholar] [CrossRef]
- Oliveira, R.B.; Moreno, A.L., Jr.; Vieira, L.C. Intumescent paint as fire protection coating. Struct. Mater. J. 2017, 10, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Konstantinova, N.; Eremina, T.; Kuznetsova, I. Development of fire-proof textile materials safe for human skin. Chem. Fibres 2019, 2, 54–57. [Google Scholar]
- Akhnazarova, S.L.; Kafarov, V.V. Methods of Optimization of Experiment in Chemical Technology; Higher School: Moscow, Russia, 1985; p. 327. [Google Scholar]
- Bartholomai, M.; Schriever, R.; Schartel, B. Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis. J. Fire Mater. 2003, 27, 151–162. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Price, D. Fire Retardant Materials; Woodhead Publishing Limited: Cambridge, UK, 2001; p. 442. [Google Scholar]
- Korolchenko, D.; Eremina, T.; Minailov, D. New Method for Quality Control of Fire Protective Coatings. In Proceedings of the IAPE ‘19 Conference, Oxford, UK, 14–15 March 2019. [Google Scholar]
- Eremina, T.; Konstantinova, N.; Kuznetsova, I. Study of fireproof properties of textile materials safe when in contact with human skin. In Proceedings of the Conference Construction the Formation of Living Environment (FORM-2019), Tashkent, Uzbekistan, 18–21 April 2019. [Google Scholar]
- Telichenko, V.I.; Roitman, V.M. Ensuring the resistance of buildings and structures under combined effects involving fire is a basic element of the integrated safety system. In Material of the 1st National Congress “Integrated Safety in Construction 2010”; IPO Publishing Ltd.: Bristol, UK, 2010; Volume 1001, pp. 15–29. [Google Scholar]
- Roitman, V.M. Resilience of buildings and structures against progressive collapse with combined special impacts involving fire. Mosc. State Univ. Her. 2009, 2, 37–59. [Google Scholar]
- Roitman, V.M. Basics Fire Safety High-Rise Buildings; M. MSSU: Moscow, Russia, 2009; p. 107. [Google Scholar]
- Nalimov, V.V. Application of Mathematical Statistics in Substance Analysis; Fizmatgiz: Moscow, Russia, 1960; p. 430. [Google Scholar]
- Zybina, O.A.; Varlamov, A.V.; Chernova, N.S.; Mnatsakanov, S.S. On the role and transformations of components of intumescent fire-retardant paint-and-varnish formulations in the course of thermolysis. Russ. J. Appl. Chem. 2009, 82, 1542–1546. [Google Scholar] [CrossRef]
- Bezzaponnaya, O.; Golovina, E.; Mansurov, T.; Akulov, A. The use of thermal analysis method for the comprehensive study and improvement of intumescent fire retardants. Technosphere Saf. 2017, 2, 3–7. [Google Scholar]
- Eremina, T.; Yushko, E.; Nikolaeva, E. The influence of phosphoric acid on the reduction of crater formation of water-borne fire retardant intumescent paint. Paint. Varn. Their Use 2015, 3, 40–42. [Google Scholar]
- Omrane, A.; Wang, Y.C.; Goransson, U.; Holmstedt, G.; Alden, M. Intumescent coating surface temperature measurement in a cone calorimeter using laser-induced phosphorescence. Fire Saf. J. 2006, 42, 68–74. [Google Scholar] [CrossRef]
- Henderson, J.B.; Wiebelt, J.A.; Tant, M.R. A model for the thermal response of polymer composite materials with experimental verification. J. Compos. Mater. 1985, 19, 579–595. [Google Scholar] [CrossRef]
- Shatalin, S.S.; Varlamov, A.B.; Zybina, O.A.; Mnatsakanov, S.S. About binders in fire retardant intumescent compositions. Des. Mater. Technol. 2014, 4, 37–40. [Google Scholar]
- Garustovich, I.V.; Shishilov, O.N. Features of the Use of Fire Retardant Intumescent Coatings for Industrial Facilities [Electronic Resource]. Available online: http://www.o3-e.ru/innovations/ (accessed on 1 November 2021).
- Babkin, O.E.; Zybina, O.A.; Tanklevsky, L.T.; Mnatsakanov, S.S. Diagnostics of the application quality and efficiency of coke-forming fire-protective coatings for metal structures. Ind. Coat. 2014, 7–8, 50–54. [Google Scholar]
- Nelson, H. Fire Severity and Fire Resistance—History of Fire Protection Engineering; National Fire Protection Association: Quincy, MA, USA, 2003. [Google Scholar]
- Yuan, J. Intumescent Coating Performance on Steel Structures under Realistic Fire Conditions. Ph.D. Thesis, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, UK, 2009. [Google Scholar]
- Lucherini, A. Experimental Study of the Behaviour of Steel Structures Protected by Different Intumescent Coatings and Exposed to Various Fire Scenarios. Master’s Thesis, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark, 2016. [Google Scholar]
- Gillet, M.; Autrique, L.; Perez, L. Mathematical model for intumescent coatings growth: Application to fire retardant systems evaluation. J. Phys. D Appl. Phys. 2007, 40, 883–899. [Google Scholar] [CrossRef]
- Underhill, W. King’s Cross Station Western Concourse. Available online: http://www.architectmagazine.com (accessed on 21 May 2012).
- Butler, K. Physical Modelling of Intumescent Fire Retardant Polymers; Building and Fire Research Laboratory, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1997.
- CMD (Construction Market Data). The Market for Fire Protection of Steel Frames Total Market (Beams and Columns) by Types of Fire Protection, Great Britain, Years 2001–2014. Available online: http://www.cmdgroup.com (accessed on 28 February 2015).
- Sorathia, U.; Gracik, T.; Ness, J.; Durkin, A.; Williams, F.; Hunstad, M.; Berry, F. Evaluation of Intumescent Coatings for Shipboard Fire Protection. J. Fire Sci. 2003, 21, 423–428. [Google Scholar] [CrossRef]
- Kandola, B.S.; Akonda, M.H.; Horrocks, A.R. Use of highperformance fibres and intumescents as char promoters in glassreinforced polyester composites. Poly. Deg. Stab. 2005, 88, 123. [Google Scholar] [CrossRef]
- Jimenez, M.; Duquesne, S.; Bourbigot, S. Characterization of the performance of an intumescent fire protective coating. Surf. Coat. Technol. 2006, 201, 979–987. [Google Scholar] [CrossRef]
- Mamleev, V.S.; Bekturov, E.A.; Gibov, K.M. Dynamics of intumescence of fire-retardant polymeric materials. J. Appl. Polym. Sci. 1998, 70, 1523–1542. [Google Scholar] [CrossRef]
- Eremina, T.Y.; Korolchenko, D.A.K.; Fadeev, V.E. Screen wall fire resistance investigation. Front. Built Environ. Indoor Environ. 2021, 6, 218. [Google Scholar] [CrossRef]
- Wail, E.D. Fire-Protective and Flame-Retardant Coating. J. Fire Sci. 2011, 29, 259–296. [Google Scholar] [CrossRef]
- Nalimov, V.V. Theory of Experiment. The Physico-mathematical Library of the Engineer; Nauka: Moscow, Russia, 1971; p. 208. [Google Scholar]
- Khalturinsky, N.; Krupkin, V. On the mechanism of action of fire retardant intumescent coatings. Fire Explos. Saf. 2011, 10, 33–41. [Google Scholar]
- Ruban, L.; Zaikov, G. Importance of intumescence in polymers fire retardancy. Int. J. Polym. Mater. 2001, 48, 295–310. [Google Scholar] [CrossRef]
- Eremina, T. Modeling and evaluation of fire retardant efficiency of intumescent flame retardants. Buildings 2020, 10, 85. [Google Scholar]
- Suzuki, J.; Mizukami, T.; Naruse, T.; Araki, Y. Fire Resistance of Timber Panel Structures Under Standard Fire Exposure. Fire Tech. 2019, 4, 1015–1034. [Google Scholar] [CrossRef]
- Eremina, T.; Korolchenko, D.; Kuznetsova, I. Features of Properties of the Fireproof Paint during the Operation. WMCAUS-2019. Available online: https://www.wmcaus.org/files/WMCAUS2019_Book.pdf (accessed on 7 September 2020).
- Konstantinova, N.I.; Eremina, T.Y.; Kuznetsova, I.N. Development of fireproof textile materials safe on contact with human skin. Fibre Chem. 2019, 51, 131–134. [Google Scholar] [CrossRef]
- Eremina, T.; Gravit, M.; Dmitrieva, Y. Aspects and principles of formulation development for flame retardant intumescent compositions based on epoxy resins. Fire Explos. Saf. 2012, 7, 52–56. [Google Scholar]
- Zybina, O.; Babkin, O. On the formulation of effective fire retardant paints and varnishes for building structures. Paint. Varn. Their Appl. 2018, 3, 44–47. [Google Scholar]
- GOST R 53293-2009. Fire Hazard of Substances and Materials, Materials, Substances and Means. Available online: https://runorm.com/catalog/102/828617/ (accessed on 7 September 2020).
- GOSTR30247.1-94. Elements of Building Constructions. Fire-Resistance Test Methods. Loadbearing and Separating Constructions. Available online: https://www.russiangost.com/p-16532-gost-302471-94.aspx (accessed on 7 September 2020).
- GOST R 30247.0-94. Elements of building Constructions. Fire-Resistance Test Methods. General Requirements. Available online: https://www.russiangost.com/p-17524-gost-302470-94.aspx (accessed on 7 September 2020).
- Zav’Yalov, D.E.; Zybina, O.A.; Mitrofanov, V.V.; Mnatsakanov, S.S. Comparative study of the behavior of ammonium phosphate in fireproofing intumescent formulations. Russ. J. Appl. Chem. 2012, 85, 1070–4272. [Google Scholar] [CrossRef]
- Zav’yalov, D.E.; Zybina, O.A.; Chernova, N.S.; Varlamov, A.V.; Mnatsakanov, S.S. Fire intumescent compositions based on the intercalated graphite. Russ. J. Appl. Chem. 2010, 83, 1679–1682. [Google Scholar] [CrossRef]
- Ustinov, A.; Zybina, O.; Tanklevsky, L.; Lebedev, V.; Andreev, A. Intumescent coatings with improved properties for high-rise construction. E3S Web Conf. 2018, 33, 02039. [Google Scholar] [CrossRef] [Green Version]
- Ustinov, A.; Zybina, O.; Tomakhova, A.; Pavlov, S. The enhancement of operating properties of intumescent fire-protective compositions. MATEC Web Conf. 2018, 245, 11008. [Google Scholar] [CrossRef]
- Ustinov, A.A.; Zybina, O.A.; Andreev, A.V. On the impact caused by titanium dioxide of di_erent trademarks on the properties of Intumescent fire-protective coatings. Mater. Sci. Forum 2019, 945, 212–217. [Google Scholar] [CrossRef]
- Wang, J.Q.; Chow, W.K. A brief review on fire retardants for polymeric foams. J. Appl. Polym. Sci. 2005, 97, 366–376. [Google Scholar] [CrossRef]
- Brodsky, V.Z. Introduction to Factor Planning of Experiment; Nauka: Moscow, Russia, 1976; p. 423. [Google Scholar]
- Born, M.; Kun, H. The Dynamic Theory of Crystal Lattices; Foreign Literature Publishing House: Moscow, Russia, 1958; p. 488. [Google Scholar]
- Nalimov, V.V.; Chernova, N.A. Statistical Methods for Planning Extreme Experiments; Nauka: Moscow, Russia, 1965; p. 338. [Google Scholar]
- Markova, E.V.; Lisenkov, A.N. Combinatorial Plans in Problems of Multifactor Experiment; Nauka: Moscow, Russia, 1945; p. 345. [Google Scholar]
Component | Percentage | |||||
---|---|---|---|---|---|---|
Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 | Comp. 5 | Comp. 6 | |
Water | 19.7 | 23.8 | 20.1 | 20.1 | 16.5 | 20.1 |
Thickener | 0.4 | 0.4 | 0.4 | 0.2 | 0.2 | 0.2 |
Dispersant | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
Surfactants | 0.8 | 0.6 | 0.8 | 0.8 | 0.7 | 0.8 |
Defoamer | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
Coalescing agent | 1.5 | 1.5 | 1.9 | 1.9 | 1.9 | 1.9 |
Titanium dioxide | 9.0 | 6.9 | 8.3 | 8.3 | 8.3 | 8.3 |
Carbonizing agent | 6.0 | 9.6 | 12.0 | 12.0 | 11.1 | 12.0 |
Intumescent agent | 7.0 | 5.4 | 12.0 | 12.0 | 12.9 | 12.0 |
Phosphorus compound | 28.0 | 21.4 | 24.0 | 24.0 | 22.9 | 24.0 |
Polyvinyl acetate dispersion | 20.0 | 20.0 | 20.0 | 20.0 | 22.4 | - |
Chloride-containing polymer | 7.0 | 5.4 | - | - | - | - |
Acrylic dispersion | - | - | - | - | - | 20.0 |
Retardant | Thermal Effects |
---|---|
Comp. 1 | Endothermic effect in the temperature range of 25–300 °C. Extreme point temperature = 223 °C. The maximum reaction rate temperatures are 81 °C (water removal), 126 °C (pentaerythritol decomposition), and 223 °C. Exothermic effect in the temperature range of 300–418 °C. Extreme point temperature = 339 °C. Maximum reaction rate temperature = 383 °C. Exothermic effect in the temperature range of 418–741 °C. Extreme point temperature = 694 °C. The maximum reaction rate temperatures are 456, 552, and 594 °C (full phosphorus compound decomposition). Mass loss at 418 °C Δm = 48.9%. Mass loss at 601 °C Δm = 82.7%. Total mass loss at 741 °C Δmtotal = 98.6%. |
Comp. 2 | Endothermic effect in the temperature range of 26–291 °C. Extreme point temperature = 184 °C. The maximum reaction rate temperatures are 81 (water removal), 140, 188 (pentaerythritol decomposition), 234, and 280 °C (beginning of phosphorus compound decomposition). Endothermic effect in the temperature range of 291–398 °C. Extreme point temperature = 328 °C. The maximum decomposition rate temperatures are 328 and 387 °C (melamine decomposition). Exothermic effect in the temperature range of 398–672 °C. Extreme point temperatures = 450, 532, 577 °C. The maximum reaction rate temperatures are 566, 601, and 642 °C (full phosphorus compound decomposition). Mass loss at 398 °C Δm = 65.4%. Mass loss at 601 °C Δm = 84.9%. Total mass loss at 673 °C—98.2%. |
Comp. 3 | Endothermic effect in the temperature range of 30–277 °C. Extreme point temperatures = 130 and 178 °C. The maximum reaction rate temperatures are 117 (water removal), 191, 215, 239, and 277 °C (pentaerythritol decomposition and beginning of phosphorus compound decomposition). Endothermic effect in the temperature range of 277–380 °C. Extreme point temperature = 338 °C. Maximum reaction rate temperatures = 326, 351, and 363 °C (melamine decomposition). Exothermic effect in the temperature range of 380–683 °C. Extreme point temperature = 548 °C. The maximum reaction rate temperatures are 474, 511, 524, 573, and 671 °C (full phosphorus compound decomposition). Mass loss at 380 °C Δm = 75.0%. Mass loss at 573 °C Δm = 90.0%. Total mass loss at 683 °C Δmtotal = 96.5%. |
Comp. 4 | Endothermic effect in the temperature range of 29–292 °C. Extreme point temperature = 170 °C. The maximum reaction rate temperatures are 87 (water removal), 120, 146, 179 (surfactant, dispersant, defoamer, and coalescing agent decomposition), 248, and 280 °C (pentaerythritol decomposition and beginning of APP decomposition). Endothermic effect in the temperature range of 292–402 °C. Extreme point temperature = 329 °C. The maximum decomposition rate temperatures = 304 and 340 °C (melamine decomposition). Exothermic effect in the temperature range of 402–902 °C. Extreme point temperatures = 560, 759 °C. The maximum reaction rate temperatures are 420, 438, 566, and 611 °C (full phosphorus compound decomposition). Mass loss at 500 °C Δm = 78.2%. Mass loss at 600 °C Δm = 90.4%. Total mass loss at 759 °C = 96.7%. |
Comp. 5 | Endothermic effect in the temperature range of 20–314 °C. Extreme point temperature = 138 °C. The maximum reaction rate temperatures are 88 °C (water removal) and 227 °C (pentaerythritol decomposition). Endothermic effect in the temperature range of 314–376 °C. Extreme point temperature = 335 °C. The maximum decomposition rate temperatures = 324 and 365 °C (melamine decomposition). Exothermic effect in the temperature range of 376–850 °C. Extreme point temperature = 553 °C. The maximum reaction rate temperatures are 494, 511, 545, 557, and 630 °C (full phosphorus compound decomposition). Mass loss at 510 °C = 75%. Mass loss at 594 °C = 86.6%. Mass loss at 685 °C = 98.8%. |
Comp. 6 | Endothermic effect in the temperature range of 31–380 °C. Extreme point temperatures = 134 °C and 335 °C. The maximum reaction rate temperatures are 89.9 °C (water removal), 235 °C (pentaerythritol decomposition), 320 °C, 335 °C, and 360 °C (melamine decomposition and beginning of phosphorus compound decomposition). Exothermic effect in the temperature range of 380–690 °C. Extreme point temperature = 477 °C. The maximum reaction rate temperatures are 477 °C, 490 °C, 530 °C, 547 °C, 592 °C, and 622 °C (full APP decomposition). Mass loss at 407 °C = 68.9%. Mass loss at 600 °C = 87.9%. Mass loss at 690 °C = 96.6%. |
Indicator Name | Grade Requirements | |||
---|---|---|---|---|
D51S | DF51/10S | DF51/10SL | DF51/15S | |
1. Dispersion appearance | White or light yellowish viscous liquid, without clumps or foreign inclusions, with a particle size of 1–3 µm. Surface film acceptable. | |||
2. Mass fraction of residual monomer (vinyl acetate), %, max. | 0.48 | 0.48 | 0.40 | 0.48 |
3. Mass fraction of dry residue, %, min. (a) non-plasticized (b) plasticized | 50 | 51 53 | 51 53 | 51 54 |
4. Relative viscosity in accordance with the standard high-molecular-weight compound cup, s (a) non-plasticized (b) plasticized | 11–20 | 11–40 11–40 | 16–25 16–25 | 11–25 16–40 |
5. Hydrogen ion concentration indicator (pH) | 4.7–6.0 | 4.5–6.0 | 5.0–6.0 | 4.7–6.0 |
6. Frost resistance in non-plasticized dispersion freeze–thaw cycles, min. | 4 | 4 | 4 | 4 |
Name of Phosphorus Compound Included in the Formulation of Flame Retardant | Intumescence Ratio Indicators |
---|---|
PC Exolit AP 422 | 39 |
PC Novoflam APP Alinova | 20 |
PC Novoflam APP | 32 |
PC Sample JLS-APP | 32 |
PC Sample JLS-APP 102 | 5 |
PC Sample JLS-APP SPICEAL | 4 |
PC Sample JLS-APP 103 | 28 |
PC FR CROS 484 | 39 |
PC FR CROS 282 | 7 |
PC Exflam APP-201 | 28 |
PC PHOS-CHEK P42 | 21 |
PC PHOS-CHEK P42C | 27 |
PC PHOS-CHEK P30 | 30 |
PC ANTIBLAZE | 27 |
PC Exolit AP 422 | 39 |
Filler Name | Contact Angle | Hydrophilicity/Hydrophobicity |
---|---|---|
Dicyandiamide | 180 | Hydrophilic |
Melamine | 180 | Hydrophilic |
Chlorinated paraffin | <90 | Hydrophobic |
Diammonium phosphate | 180 | Hydrophilic |
Urea | 180 | Hydrophilic |
Phosphorus compound (Spain) | 180 | Hydrophilic |
Pentaerythritol | 180 | Hydrophilic |
Sorbitol | 180 | Hydrophilic |
Titanium dioxide | 180 | Hydrophilic |
Dipentaerythritol | 180 | Hydrophilic |
Starch | 180 | Hydrophilic |
Phosphorus compound (Germany) | 180 | Hydrophilic |
Phosphate Name | Water Solubility | Decomposition Temperature, °C | Primary Decomposition Products | Solution (Suspension) pH |
---|---|---|---|---|
NH4H2PO4 | Soluble | 147 | NH3, H3PO4 | 3–4 |
(NH4)2HPO4 | Soluble | 87 | NH3, H3PO4 | 8–9 |
Urea phosphate | Soluble | 130 | NH3, H3PO4, CO2, H2O | 9–10 |
Ammonium polyphosphate | Insoluble | 240 | NH3, (HPO3)n | 6–7 |
Foaming Agent Name | Water Solubility | Decomposition Temperature, °C | Primary Decomposition Products | Solution (Suspension) pH |
---|---|---|---|---|
Urea | Soluble | 130 | NH3, CO2, H2O | 8–9 |
Thiourea | Poorly soluble | 96 | NH3, CO2, H2O, SO2 | 6–7 |
Dicyandiamide | Poorly soluble | 180 | NH3, CO2, H2O | 7–8 |
Melamine | Insoluble | 300 | NH3, CO2, H2O | 7–8 |
Carbonizing Substance Name | Water Solubility | Decomposition Temperature, °C | Solution (Suspension) pH |
---|---|---|---|
Starch | Soluble | 140 | 7.0 |
Sorbitol | Soluble | 110 | 6–7 |
Pentaerythritol | Poorly soluble | 263.5 | 6–7 |
Halogenated Substance Name | Water Solubility | Decomposition Temperature | Solution (Suspension) pH |
---|---|---|---|
Chlorinated paraffin | Insoluble | 160–350 | 5–6 |
Chlorine-containing polymer (KhSPEL) | Insoluble | 140 | 5–6 |
Component Description | Comp. 1 | Comp. 2 | Comp. 3 | Comp. 4 | Comp. 5 | Comp. 6 |
---|---|---|---|---|---|---|
Water | 19.7 | 23.8 | 20.1 | 20.1 | 16.5 | 20.1 |
Carbonizing agent | 6.0 | 9.6 | 12.0 | 12.0 | 11.1 | 12.0 |
Intumescent agent | 7.0 | 5.4 | 12.0 | 12.0 | 12.9 | 12.0 |
Phosphorus compound | 28.0 | 21.4 | 24.0 | 24.0 | 22.9 | 24.0 |
Polyvinyl acetate dispersion | 20.0 | 20.0 | 20.0 | 20.0 | 22.4 | - |
Property modifier set | 19.3 | 15.3 | 11.9 | 11.9 | 11.3 | 11.9 |
Matrix X | Matrix Y | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | Y1 | Y2 | Y3 | Y4 |
0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 10 | 120 | 15 | 1 |
1.5 | 1.5 | 0.5 | 0.5 | 1.5 | 1.5 | 0.5 | 0.5 | 10 | 48 | 15 | 1 |
1.5 | 0.5 | 1.5 | 0.5 | 1.5 | 0.5 | 1.5 | 0.5 | 10 | 48 | 15 | 1 |
0.5 | 1.5 | 1.5 | 0.5 | 0.5 | 1.5 | 1.5 | 1.5 | 10 | 24 | 5 | 2 |
1.5 | 0.5 | 0.5 | 1.5 | 0.5 | 1.5 | 1.5 | 0.5 | 30 | 24 | 5 | 1 |
0.5 | 1.5 | 0.5 | 1.5 | 1.5 | 0.5 | 1.5 | 0.5 | 30 | 24 | 3 | 2 |
0.5 | 0.5 | 1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 1.5 | 10 | 24 | 3 | 2 |
1.5 | 1.5 | 1.5 | 1.5 | 0.5 | 0.5 | 0.5 | 0.5 | 50 | 48 | 15 | 1 |
1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 80 | 24 | 3 | 2 |
15 | 30 | 16 | 16 | 7 | 3.5 | 5 | 3 | As = 0.948 | 1.57 | 0.146 | 0.187 |
9 | 20 | 10 | 10 | 4 | 0.5 | 1.5 | 1.5 | Ex = −0.765 | 2.24 | −2.14 | −2.17 |
No. | y1e | y1ac | y1cc | y1bc | y1dc | y2e | y2ac | y2bc | y3e | y3ac | y3bc | y3cc | y3dc | y4e | y4ac | y4bc | y4cc | y4dc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10 | 0.43 | 10.6 | 18.9 | 6.84 | 1 | 1.03 | 0.997 | 15 | 15 | 15.4 | 14.7 | 15.1 | 120 | 121 | 120 | 118 | 120 |
2 | 10 | 6.2 | 20.5 | 10.4 | 8.22 | 1 | 0.959 | 0.999 | 15 | 14.8 | 15.1 | 15.8 | 15.2 | 48 | 35.9 | 42.6 | 47.5 | 47.9 |
3 | 10 | 20.7 | 13 | 9.03 | 7.85 | 1 | 0.983 | 0.997 | 15 | 14.7 | 14.3 | 15 | 14.7 | 48 | 45.6 | 53 | 49.9 | 47.9 |
4 | 10 | 5.13 | 11.4 | 9.03 | 10.2 | 2 | 2 | 1.98 | 5 | 5.13 | 4.06 | 5 | 5.04 | 24 | 27.5 | 23.3 | 26.3 | 26.4 |
5 | 30 | 28.8 | 20.3 | 27.1 | 31.2 | 1 | 1.05 | 1.03 | 5 | 4.97 | 4.32 | 5 | 4.95 | 24 | 35.9 | 31.3 | 27.1 | 25.5 |
6 | 30 | 30.6 | 20.5 | 27.1 | 29.8 | 2 | 2 | 1.99 | 3 | 0.73 | 4.06 | 3.02 | 1.98 | 24 | 7.78 | 22.5 | 19.3 | 23 |
7 | 10 | 3.83 | 13 | 9.03 | 10.5 | 2 | 2 | 2.02 | 3 | 3.28 | 3.28 | 1.75 | 2.26 | 24 | 27.5 | 24.9 | 26.3 | 22.3 |
8 | 60 | 55.8 | 59.7 | 59.2 | 60.1 | 1 | 0.983 | 1.03 | 15 | 14.8 | 15.1 | 14.7 | 15.1 | 48 | 45.6 | 38.5 | 49.9 | 47.1 |
9 | 80 | 81.3 | 81.2 | 80.7 | 80.1 | 2 | 2 | 1.98 | 3 | 4.94 | 3.28 | 2.87 | 3.25 | 24 | 23.8 | 27.8 | 19.3 | 24 |
F | - | 15.1 | 12.7 | 46.6 | 136 | - | 277.6 | 377.7 | - | 27.1 | 65.7 | 89.3 | 97 | - | 11.6 | 27.1 | 77.1 | 384.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korolchenko, D.A.; Eremina, T.Y. Method of Mathematical Modeling for the Experimental Evaluation of Flame-Retardant Materials’ Parameters. Materials 2022, 15, 11. https://doi.org/10.3390/ma15010011
Korolchenko DA, Eremina TY. Method of Mathematical Modeling for the Experimental Evaluation of Flame-Retardant Materials’ Parameters. Materials. 2022; 15(1):11. https://doi.org/10.3390/ma15010011
Chicago/Turabian StyleKorolchenko, Dmitry Alexandrovich, and Tatiana Yurievna Eremina. 2022. "Method of Mathematical Modeling for the Experimental Evaluation of Flame-Retardant Materials’ Parameters" Materials 15, no. 1: 11. https://doi.org/10.3390/ma15010011
APA StyleKorolchenko, D. A., & Eremina, T. Y. (2022). Method of Mathematical Modeling for the Experimental Evaluation of Flame-Retardant Materials’ Parameters. Materials, 15(1), 11. https://doi.org/10.3390/ma15010011